Edelweiss: Decentralized Protocol Compiler

Milestone 1 (MVP): RPC compiler for Go

Petar Maymounkov
petar@protocol.ai


mailto:petar@protocol.ai

Roadmap

Milestone 1 (Q1 2022, MVP): RPC compiler for Go (THIS TALK)

Milestone 2 (Q2 2022): Feature parity with IPLD schema, performance squared,
policies and transforms

Milestone 3 (Q3 2022): Lambdas across networks, Filecoin/FVM actors API

Milestone X: Multiple target languages, packaging, github integration, doc
generation, cli generation, type interoperability checks at compile time, etc.



Plan

e Definitions
e Types (semantics, representations, generated runtime code)
o |nteroperability

e Usage



Definitions



AST interface

User builds type definition AST in Go.
Syntax to come later, when the language matures.

import "github.com/ipld/edelweiss/defs"

Typesy
Named{ Name: "MyLink", Type: Link{To: Int{}} }, // link to int
Named{ Name: "MylList", Type: List{Element: Any{}} }, // list of any




Named definitions

Wrap a type definition in Named{}

Named{
Name: "MyStructure"
Type: Structure{
Fields: Fields{
Field{ Name: "Foo", Type: Int{} 1},
Field{ Name: "Bar", Type: Any{} I},




Inline definitions

Named{
Name: "MyStructure"
Type: Structure{
Fields: Fields{
Field{
Name: "MyFieldFoo",
Type: List{Element: Int{}}, // <—— inline type definition, list of int

t

Inline types are named generically, e.g. AnonListXXX



Named inline definitions

Named{
Name: "MyStructure"
Type: Structure{
Fields: Fields{
Field{
Name: "MyFieldFoo",
Type: Named { // <—— named inline type definition,
Name: "MyInlinelListOfInt",
Type: List{Element: Int{}},
b
Py
¥
¥

list of int




Type references

Use Ref{Name: "TypeName"} torefertoany Named type

Named{
Name: "MyList",
Type: List{ Element: Int{} }

Named<{
Name: "MyListOfList",
Type: List{ Element: Ref{Name: "MyList"} }




Types

10



Significance of types

1. Semantics of data (agnostic to programming language)

2. Representation of data in IPLD Data Model (encoding/decoding)
Note: “Transforms"” (introduced later) can alter representation.

3. Representation of data in user's programming language

11



Types

o Non-parametric
o Builtin: Bool, Float, Int, Byte, Char, String, Bytes

o Special: Any, Nothing

o Parametric
o Composite: Link, List, Map, Structure, Inductive, Singleton, Union

o Functional: Function, Service, Method

Italicized types are new or different from IPLD Schema types.

12



Non-parametric types

13



Builtin types

Definitions:

Bool{} // represented as IPLD bool
Float{} // represented as IPLD float
Int{} // represented as IPLD int
Byte{} // represented as IPLD int
Char{}

String{}

Bytes{}

Runtime implementations in package github.com/ipld/edelweiss/values :

type Byte byte
// etc.

14



Char

Semantically:

e acharacteris not an integer
Representationally:

e encoded as an IPLD integer which is a valid UTF8
Programmatically:

e Implemented by type Char rune inpackage edelweiss/values

15



String

Semantically:
e String{} isequivalentto List{Element: Char{}}
Representationally:

e Encodes to IPLD string
e Decodes from a UTF8 IPLD string or the IPLD encoding of List{Element: Char{}}

Programmatically:

e Implemented by type String string inpackage edelweiss/values

16



Bytes

Semantically:
e Bytes{} isequivalentto List{Element: Byte{}}
Representationally:

e Encodesto IPLD bytes
e Decodes from IPLD bytes or the IPLD encoding of List{Element: Byte{}}

Programmatically:

e Implemented by type Bytes [lbyte inpackage edelweiss/values

17



Special types

18



Nothing

Semantically:

e Nothing{} holds no value
Representationally:

e Encodes as IPLD nothing
Programmatically:

e Implemented by type Nothing struct{}

E.g. use in conjunction with Inductive types to describe enumerations.
E.g. use in conjunction with Union types to describe optional values.

19



Any

Semantically:

e Any{} can hold any IPLD value

e |PLD kinds are in one-to-one mapping with types in this type sytem:
o |[PLD bool, int, float, string, bytes map to Bool{}, Int{}, Float{},
String{}, Bytes{}

o |[PLD link mapsto Link{To: Any{}}

o |[PLD list mapsto List{To: Any{}}

o IPLD map mapsto Map{Key: Any{}, Value: Any{}}
o |[PLD nothing mapsto Nothing{}

Programmatically:

e Implemented by type Any struct{ Value } where Value is an interface

20



Parametric types

21



Link

Semantically:

e Link{To: TYPE_DEF_OR_REF}
Representationally:

e Encodes as IPLD link
Programmatically:

o Code-generated Go struct which holdsa Cid

Use Link{To: Any{}} when the link target is of unknown type.

22



List
Semantically:

e List{Element: TYPE_DEF_OR_REF}
Representationally:

e Encodes as IPLD list

Programmatically:

o Code-generated Go alias for a slice type

23



Map

Semantically:

e Map{Key: TYPE_DEF_OR_REF, Value: TYPE_DEF_OR_REF}
Representationally:

e Encodes as IPLD list of key/value pairs or an IPLD map, if the key is a string
Programmatically:

o Code-generated Go slice of key/value pairs or a Go map, if the key is a string

24



Structure

Semantically:

e Alist of named and typed fields, written as

Structure{
Fields: Fields{
Field{Name: "NAME", Type: TYPE_DEF_OR_REF},

Representationally:
e Encodes as IPLD map
Programmatically:

e Code-generated Go struct e



Singletons

Semantically:

o A builtin value that always equals a given constant, written as

SingletonBool{BOOL_VALUE}
SingletonInt{INT_VALUE?}
SingletonByte{BYTE_VALUE?}
SingletonChar{CHAR_VALUE?}
SingletonFloat{FLOAT_VALUE}
SingletonString{STRING_VALUE}

Representationally:
e Encoded as the correspoding IPLD kind
Programmatically:

e Code-generated as an empty Go struct

26



Inductive

Semantically:

e One of alist of name/value pairs distinguished by their name, written as

Inductive{
Cases: Cases{
Case{Name: "NAME", Type: TYPE_DEF_OR_REF},

Representationally:

e Encoded as an IPLD map, wrapping the case name and its value
Programmatically:

e Code-generated asa Go struct with one pointer field per case

"Inductive” types correspond to IPLD Schema "union" types.

27



Union

Semantically:

e One of a list of name/value pairs distinguished by their value, written as

Union{
Cases: Cases{
Case{Name: "NAME", Type: TYPE_DEF_OR_REF},

Representationally:

e Encoded as the value of the active case

e The union itself has no representational footprint
Programmatically:

e Code-generated asa Go struct with one pointer field per case

28



Inductive # Union

Note that inductive and union types are fundamentally different:

e Both types constitute cases that have a name and a value
e Inductive cases are distinguished by their names

o Union cases are distinguished by their values

29



Enumeration = Union + Singleton

Traditional enumerations over any primitive type can be expressed as a union of singletons:

Union<{

Cases: Cases{
Case{Name:
Case{Name:

¥

¥

"Casel", Value: SingletonInt{1}}
"Case2", Value: SingletonInt{2}}

30



String-valued enumeration = Inductive + Nothing

Traditional enumerations over strings can also be expressed as an inductive type with
nothing values:

Inductive{
Cases: Cases{
Case{Name: "Casel", Value: Nothing{}}
Case{Name: "Case2", Value: Nothing{}}




Services

32



Service type

o A service is a collection of methods
e Each method is uniquely named and associated with a functional signature

o A functional signature specifies the types of the argument and a return values

33



Service definition

Named{
Name: "MyService"
Service({
Methods: Methods{
Method<{
Name: "MyMethod",
Type: Fn{
Arg: TYPE_DEF_OR_REF,
Return: TYPE_DEF_OR_REF,
b,
5
I/
I,
¥

34



Generated RPC code

o The compiler supports multiple RPC code-generation backends

e Currently, we have a DAGJSON-over-HTTP backend
o Single URL endpoint per service

o Method and arguments captured in the DAGJSON body of an HTTP GET request

35



Cross-version and -capability interoperability

36



Problem

e Protocols always evolve; never in a finished state
e |tis hard to predict the direction of evolution of a protocol

e This causes over-thinking, over-engineering and paralisis in earlier version designs

Solution

e Enable backwards-compatible growth from any state and in any part of a protocol

37



Structures can grow

A server expecting

Structure{
Fields: Fields{
Field{ Name: "Foo", Type: Int{} },
I

Will accept requests from a client sending

Structure{
Fields: Fields{
Field{ Name: "Foo", Type: Int{} },
Field{ Name: "Bar", Type: String{} I,
b g

38



Structures can shrink

A server expecting

Structure{
Fields: Fields{

Cases: Cases{

Case{ Name:
Case{ Name:

Field{ Name: "Bar", Type: Union{

"Missing", Type: Nothing{} },
"String", Type: String{} 1},

Will accept requests from a client sending

Structure{ Fields: Fields{} }

This feature is slated for Milestone 2.

39



Introducing alternatives where there weren't (1/2)

Suppose V1 of a type definition is:

Structure{

Fields: Fields{
Field{
Name: "Foo",
Type: Int{},
b
b7
¥

40



Introducing alternatives where there weren't (2/2)

The next iteration, V2, of the protocol can substitute any given type with a union over old
and new alternatives:

Structure{
Fields: Fields<
Field{
Name: "Foo",
Type: Union{ // 1nt 1s substituted by union of int or float
Cases: Cases{
Case{ Name: "MyInt", Type: Int{} I,
Case{ Name: "MyFloat", Type: Float{} },
¥
b
b
7 g
¥

41



Excess, deficit and unexpected data

At a receiver:
e Data which is in excess of the schema can be captured generically as IPLD data. This
applies to: structure fields and union/inductive cases.

e Data which is missing can be captured, by instructing the code-generator to treat the
entire schema as optional (at every level of the schema hierarchy)

e Data which contradicts the expected types can also be captured generically as IPLD
data. This applies to: structure fields and union/inductive cases.

These features are planned for Milestone 2, based on use case urgency.

42



Usage

43



Compiling and code generation

See a complete example in github.com/ipld/edelweiss/examples

Compile type definitions to a Go source file generation plan:

X := &GoPkgCodegen{
GoPkgDirPath: "/home/petar/src/foo/bar", // local directory for generated code

GoPkgPath: "github.com/petar/foo/bar", // go package name of generated code
Defs: Types{ ... }, // type definitions

¥

goFile, err := x.Compile()

Materialize the Go file to disk:

goFile.Build()

err



http://github.com/ipld/edelweiss/examples

