
Edelweiss: Decentralized Protocol Compiler

Milestone 1 (MVP): RPC compiler for Go

Petar Maymounkov
petar@protocol.ai

1

mailto:petar@protocol.ai

Roadmap

Milestone 1 (Q1 2022, MVP): RPC compiler for Go (THIS TALK)

Milestone 2 (Q2 2022): Feature parity with IPLD schema, performance squared,
policies and transforms

Milestone 3 (Q3 2022): Lambdas across networks, Filecoin/FVM actors API

Milestone X: Multiple target languages, packaging, github integration, doc

generation, cli generation, type interoperability checks at compile time, etc.

2

Plan

Definitions

Types (semantics, representations, generated runtime code)

Interoperability

Usage

3

Definitions

4

AST interface

User builds type definition AST in Go.
Syntax to come later, when the language matures.

import "github.com/ipld/edelweiss/defs"

Types{

 Named{ Name: "MyLink", Type: Link{To: Int{}} }, // link to int

 Named{ Name: "MyList", Type: List{Element: Any{}} }, // list of any

 ...

}

5

Named definitions

Wrap a type definition in Named{}

Named{

 Name: "MyStructure"

 Type: Structure{

 Fields: Fields{

 Field{ Name: "Foo", Type: Int{} },

 Field{ Name: "Bar", Type: Any{} },

 }

 }

}

6

Inline definitions

Named{

 Name: "MyStructure"

 Type: Structure{

 Fields: Fields{

 Field{

 Name: "MyFieldFoo",

 Type: List{Element: Int{}}, // <-- inline type definition, list of int

 },

 }

 }

}

Inline types are named generically, e.g. AnonListXXX

7

Named inline definitions

Named{

 Name: "MyStructure"

 Type: Structure{

 Fields: Fields{

 Field{

 Name: "MyFieldFoo",

 Type: Named { // <-- named inline type definition, list of int

 Name: "MyInlineListOfInt",

 Type: List{Element: Int{}},

 },

 },

 }

 }

}

8

Type references

Use Ref{Name: "TypeName"} to refer to any Named type

Named{

 Name: "MyList",

 Type: List{ Element: Int{} }

}

Named{

 Name: "MyListOfList",

 Type: List{ Element: Ref{Name: "MyList"} }

}

9

Types

10

Significance of types

1. Semantics of data (agnostic to programming language)

2. Representation of data in IPLD Data Model (encoding/decoding)

Note: "Transforms" (introduced later) can alter representation.

3. Representation of data in user's programming language

11

Types

Non-parametric
Builtin: Bool, Float, Int, Byte, Char, String, Bytes

Special: Any, Nothing

Parametric
Composite: Link, List, Map, Structure, Inductive, Singleton, Union

Functional: Function, Service, Method

Italicized types are new or different from IPLD Schema types.

12

Non-parametric types

13

Builtin types

Definitions:

Bool{} // represented as IPLD bool

Float{} // represented as IPLD float

Int{} // represented as IPLD int

Byte{} // represented as IPLD int

Char{}

String{}

Bytes{}

Runtime implementations in package github.com/ipld/edelweiss/values :

type Byte byte

// etc.

14

Char

Semantically:

a character is not an integer

Representationally:

encoded as an IPLD integer which is a valid UTF8

Programmatically:

Implemented by type Char rune in package edelweiss/values

15

String

Semantically:

String{} is equivalent to List{Element: Char{}}

Representationally:

Encodes to IPLD string

Decodes from a UTF8 IPLD string or the IPLD encoding of List{Element: Char{}}

Programmatically:

Implemented by type String string in package edelweiss/values

16

Bytes

Semantically:

Bytes{} is equivalent to List{Element: Byte{}}

Representationally:

Encodes to IPLD bytes

Decodes from IPLD bytes or the IPLD encoding of List{Element: Byte{}}

Programmatically:

Implemented by type Bytes []byte in package edelweiss/values

17

Special types

18

Nothing

Semantically:

Nothing{} holds no value

Representationally:

Encodes as IPLD nothing

Programmatically:

Implemented by type Nothing struct{}

E.g. use in conjunction with Inductive types to describe enumerations.
E.g. use in conjunction with Union types to describe optional values.

19

Any

Semantically:

Any{} can hold any IPLD value

IPLD kinds are in one-to-one mapping with types in this type sytem:
IPLD bool, int, float, string, bytes map to Bool{} , Int{} , Float{} ,

String{} , Bytes{}

IPLD link maps to Link{To: Any{}}

IPLD list maps to List{To: Any{}}

IPLD map maps to Map{Key: Any{}, Value: Any{}}

IPLD nothing maps to Nothing{}

Programmatically:

Implemented by type Any struct{ Value } where Value is an interface
20

Parametric types

21

Link

Semantically:

Link{To: TYPE_DEF_OR_REF}

Representationally:

Encodes as IPLD link

Programmatically:

Code-generated Go struct which holds a Cid

Use Link{To: Any{}} when the link target is of unknown type.

22

List

Semantically:

List{Element: TYPE_DEF_OR_REF}

Representationally:

Encodes as IPLD list

Programmatically:

Code-generated Go alias for a slice type

23

Map

Semantically:

Map{Key: TYPE_DEF_OR_REF, Value: TYPE_DEF_OR_REF}

Representationally:

Encodes as IPLD list of key/value pairs or an IPLD map, if the key is a string

Programmatically:

Code-generated Go slice of key/value pairs or a Go map, if the key is a string

24

Structure

Semantically:

A list of named and typed fields, written as

Structure{

 Fields: Fields{

 Field{Name: "NAME", Type: TYPE_DEF_OR_REF},

 ...

 }

}

Representationally:

Encodes as IPLD map

Programmatically:

Code-generated Go struct
25

Singletons

Semantically:

A builtin value that always equals a given constant, written as

SingletonBool{BOOL_VALUE}

SingletonInt{INT_VALUE}

SingletonByte{BYTE_VALUE}

SingletonChar{CHAR_VALUE}

SingletonFloat{FLOAT_VALUE}

SingletonString{STRING_VALUE}

Representationally:

Encoded as the correspoding IPLD kind

Programmatically:

Code-generated as an empty Go struct
26

Inductive

Semantically:

One of a list of name/value pairs distinguished by their name, written as

Inductive{

 Cases: Cases{

 Case{Name: "NAME", Type: TYPE_DEF_OR_REF},

 ...

 }

}

Representationally:

Encoded as an IPLD map, wrapping the case name and its value

Programmatically:

Code-generated as a Go struct with one pointer field per case

"Inductive" types correspond to IPLD Schema "union" types. 27

Union

Semantically:

One of a list of name/value pairs distinguished by their value, written as

Union{

 Cases: Cases{

 Case{Name: "NAME", Type: TYPE_DEF_OR_REF},

 ...

 }

}

Representationally:

Encoded as the value of the active case

The union itself has no representational footprint

Programmatically:

Code-generated as a Go struct with one pointer field per case 28

Inductive ≠ Union

Note that inductive and union types are fundamentally different:

Both types constitute cases that have a name and a value

Inductive cases are distinguished by their names

Union cases are distinguished by their values

29

Enumeration = Union + Singleton

Traditional enumerations over any primitive type can be expressed as a union of singletons:

Union{

 Cases: Cases{

 Case{Name: "Case1", Value: SingletonInt{1}}

 Case{Name: "Case2", Value: SingletonInt{2}}

 ...

 }

}

30

String-valued enumeration = Inductive + Nothing

Traditional enumerations over strings can also be expressed as an inductive type with

nothing values:

Inductive{

 Cases: Cases{

 Case{Name: "Case1", Value: Nothing{}}

 Case{Name: "Case2", Value: Nothing{}}

 ...

 }

}

31

Services

32

Service type

A service is a collection of methods

Each method is uniquely named and associated with a functional signature

A functional signature specifies the types of the argument and a return values

33

Service definition

Named{

 Name: "MyService"

 Service{

 Methods: Methods{

 Method{

 Name: "MyMethod",

 Type: Fn{

 Arg: TYPE_DEF_OR_REF,

 Return: TYPE_DEF_OR_REF,

 },

 },

 ...

 },

 },

}

34

Generated RPC code

The compiler supports multiple RPC code-generation backends

Currently, we have a DAGJSON-over-HTTP backend

Single URL endpoint per service

Method and arguments captured in the DAGJSON body of an HTTP GET request

35

Cross-version and -capability interoperability

36

Problem

Protocols always evolve; never in a finished state

It is hard to predict the direction of evolution of a protocol

This causes over-thinking, over-engineering and paralisis in earlier version designs

Solution

Enable backwards-compatible growth from any state and in any part of a protocol

37

Structures can grow

A server expecting

Structure{

 Fields: Fields{

 Field{ Name: "Foo", Type: Int{} },

 },

}

Will accept requests from a client sending

Structure{

 Fields: Fields{

 Field{ Name: "Foo", Type: Int{} },

 Field{ Name: "Bar", Type: String{} },

 },

}

38

Structures can shrink

A server expecting

Structure{

 Fields: Fields{

 Field{ Name: "Bar", Type: Union{

 Cases: Cases{

 Case{ Name: "Missing", Type: Nothing{} },

 Case{ Name: "String", Type: String{} },

 },

 },

 },

 },

}

Will accept requests from a client sending

Structure{ Fields: Fields{} }

This feature is slated for Milestone 2. 39

Introducing alternatives where there weren't (1/2)

Suppose V1 of a type definition is:

Structure{

 Fields: Fields{

 Field{

 Name: "Foo",

 Type: Int{},

 },

 },

}

40

Introducing alternatives where there weren't (2/2)

The next iteration, V2, of the protocol can substitute any given type with a union over old

and new alternatives:

Structure{

 Fields: Fields{

 Field{

 Name: "Foo",

 Type: Union{ // int is substituted by union of int or float

 Cases: Cases{

 Case{ Name: "MyInt", Type: Int{} },

 Case{ Name: "MyFloat", Type: Float{} },

 }

 },

 },

 },

}

41

Excess, deficit and unexpected data

At a receiver:

Data which is in excess of the schema can be captured generically as IPLD data. This

applies to: structure fields and union/inductive cases.

Data which is missing can be captured, by instructing the code-generator to treat the

entire schema as optional (at every level of the schema hierarchy)

Data which contradicts the expected types can also be captured generically as IPLD

data. This applies to: structure fields and union/inductive cases.

These features are planned for Milestone 2, based on use case urgency.

42

Usage

43

Compiling and code generation

See a complete example in github.com/ipld/edelweiss/examples

Compile type definitions to a Go source file generation plan:

x := &GoPkgCodegen{

 GoPkgDirPath: "/home/petar/src/foo/bar", // local directory for generated code

 GoPkgPath: "github.com/petar/foo/bar", // go package name of generated code

 Defs: Types{ ... }, // type definitions

}

goFile, err := x.Compile()

Materialize the Go file to disk:

err = goFile.Build()

44

http://github.com/ipld/edelweiss/examples

