And so Forth...

Copyright J.L. Bezemer

2001-03-25






Contents

1 Preface 5
1.1 Copyright . . . . . o e 5
1.2 Imntroduction. . . . . . . . . . . . e 5
1.3 About this primer . . . . . . . . L 5

2 Forth fundamentals 7
2.1 Making calculations without parenthesis . . . . . . . .. ... ... ... ... ... 7
2.2 Manipulating thestack . . . . . .. .. ... L oo 8
2.3 Deep stack manipulators . . . . . . .. ... 9
2.4 Pass arguments to functions . . . . . . ... oL oL 9
2.5 Making your own words . . . . . . . ... 10
2.6 Adding comment . . . . ... ... e e e e e e 11
2.7 Text-format of Forth source . . . . . . . . . .. ... . 11
2.8 Displaying string constants . . . . . . ... Lo 12
2.9 Declaring variables . . . . . . ... Lo 12
2.10 Using variables . . . . . . . . L 12
2.11 Built-in variables . . . . . . . ..o 13
2.12 What isacell? . . . . . . . . e 13
2.13 Declaring and using constants . . . . . . . . ... oL oL oL 13
2.14 Built-in constants . . . . .. ... L. e 13
2.15 Using booleans . . . . . . . . . . . e 13
2.16 IF-ELSE CONnStructs . . . . . o v v v v v et i e e e e e e e e e e e e e e 14
2.17 FOR-NEXT constructS . . . . . . o v v v ittt e e e e e e e e e e 14
2.18 WHILE-DO constructs . . . . . . . . . . . . 0 ittt e et e 15
2.19 REPEAT-UNTIL constructs . . . . . . .« o v v v vttt e e e e e e e e e e 16
2.20 Infinite loops . . . . . . .. 16
2.21 Getting a number from the keyboard . . . . . . . .. ..o o000 oL 17
2.22 Aligning numbers . . . . . . ... L e 17



4 CONTENTS
3 Arrays and strings 19
3.1 Declaring arrays of numbers . . . . . . . ... e 19
3.2 Using arrays of numbers . . . . . . . . .. 19
3.3 Creating arraysof constants . . . . . . . .. ... L. 20
3.4 Using arraysof constants . . . . . . . .. ..o 20
3.5 Creatingstrings . . . . . . . . . . . e 20
3.6 Imitializing strings . . . . . . . . . . L 21
3.7 Getting the length of a string . . . . . . . ... ... ... . ... 21
3.8 Printing a string variable . . . .. . ... oL oL oo 22
3.9 Copying a string variable . . . . . ... ..o Lo 23
3.10 Slicing strings . . . . . . . . . ... 24
3.11 Appending strings . . . . . . .. ... Lo 26
3.12 Comparing strings . . . . . . . . . . i e e e e e e 27
3.13 Removing trailing spaces . . . . . . . . . . . L L e e e 27
3.14 String constants and string variables . . . . .. .. ... o o oo 28
3.15 The count byte . . . . . . . . . o . e e 28
3.16 Printing individual characters . . . . . . . . .. ... ... L. 28
3.17 Getting ASCII values . . . . . . . . . . i 29
3.18 When touse [CHARJor CHAR . . . . . . ... ... ... .. ... .. ... .. .. 29
3.19 Printing spaces . . . . . . . .o e e e e 29
3.20 Fetching individual characters . . . . . . . . .. . . . ... oL L oL 30
3.21 Storing individual characters . . . . . . . ... ... oo 31
3.22 Getting a string from the keyboard . . . . . . . ... 000000 32
3.23 What is the TIB? . . . . . . . . . . . e 33
3.24 What is the PAD? . . . . . . . . . e 33
3.25 How do I use TIB and PAD? . . . . . . . . . . . . . it 33
3.26 Temporary string constants . . . . . . . . . .. ... Lo 34
3.27 Simple parsing . . . . ... 34
3.28 Converting a string toanumber . . . . . .. ..o oL oL 35
3.29 Controlling theradix . . . . . . . . . . . .. L 36
3.30 Pictured numeric output . . . . . . . . ... 39
3.31 Converting a number to astring . . . . . . . . ... oo oL 41



CONTENTS

4 Stacks and colon definitions

4.1 The address of a colon-definition . . . . . ... .. ... oL
4.2 Vectored execution . . . . . . . .. L
43 Usingvalues. . . . . . . . . o e
44 Thestacks . . . . . . . . L
4.5 Saving temporary values . . . . . . . ... o e
4.6 The Return Stack and the DO.LOOP . . . .. ... ... .. .. ..........
4.7 Other Return Stack manipulations . . . . . .. .. ... ... ... ... ...
4.8 Altering the flow with the Return Stack . . . . . ... ... ... .. ... .....
4.9 Leaving a colon-definition . . . . . . . ... ... oo
4.10 How deep is your stack? . . . . . . . . . . ...

5 Advanced topics

5.1 Booleans and numbers . . . . ... ..o L
5.2 Including your own definitions . . . . . . . . .. ... L o oo
5.3 Conditional compilation . . . . .. .. ... Lo
5.4 Exceptions . . . . . . . .. e e e e
5.0 Lookuptables . . . . . . . . ..
5.6 Fixed point calculation . . . . . . . .. ..o
5.7 Recursion . . . . . ..
5.8 Forward declarations . . . . . . .. .. L
59 Thisistheend . . . . . . . . . .. . .

I Appendices

43
43
43
44
45
46
47
48
49
50
50

51
51
52
53
55
58
62
63
64
65

67



CONTENTS



Chapter 1

Preface

1.1 Copyright

Copyright (c¢) 2001 J.L. Bezemer.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being "GNU Free Documentation License”, "Introduction
and "About this primer”, with the Front-Cover Texts being "And so Forth..., J.L. Bezemer”, and
with the Back-Cover Texts being "The initial version of this primer was written by Hans Bezemer,
author of the 4tH compiler.”. A copy of the license is included in the section entitled "GNU Free
Documentation License".

1.2 Introduction

Don’t you hate it? You’ve just got a new programming language and you’re trying to write your
first program. You want to use a certain feature (you know it’s got to be there) and you can’t
find it in the manual.

I’ve had that experience many times. So in this manual you will find many short features on all
kind of topics. How to input a number from the keyboard, what a cell is, etc.

I hope this will enable you to get quickly on your way. If it didn’t, email me at "hansoft@bigfoot.com’.
You will not only get an answer, but you will help future Forth users as well.

You can use this manual two ways. You can either just get what you need or work your way
through. Every section builds on the knowledge you obtained in the previous sections. All sections
are grouped into levels. We advise you to use what you’ve learned after you’ve worked your way
through a level.

If this isn’t enough to teach you Forth you can always get a real good textbook on Forth, like
"Starting Forth" by Leo Brodie. Have fun!

1.3 About this primer

This primer was originally written for 4tH, my own Forth compiler. 4tH isn’t ANS-Forth compli-
ant, by ANS-Forth standards not even a ANS-Forth system. After a while I got questions why

7



8 CHAPTER 1. PREFACE

certain examples weren’t working. Since I tested every single one of them I wondered why. Until
it dawned on me: people learning Forth were using my primer!

So due to high demand T started to rewrite it for ANS-Forth compliant systems. Most of these
systems don’t even have a manual at all so the need for it should be great. The next question was:
which format. Since I wanted to learn LyX anyway, I settled for that. You can produce various
formats with it which are readable on most systems, including MS-DOS, MS-Windows and Linux.

The next question was: how far do you go. The original version was heavily geared towards
4tH, which reflects my own views on Forth. And those views sometimes contradict to those of
ANS-Forth. However, since Leo Brodie took the liberty in “"Thinking Forth” to express his views,
I thought I should have the freedom to express mine.

Some examples, especially in the "Advanced topics” chapter, use special 4tH extensions. Fortu-
nately Wil Baden had helped me to write a 4tH-to-ANS-Forth interface. Since some of these
extensions cover functionalities commonly found in other languages I decided to keep those sec-
tions in, using the Easy4tH definitions. In the previous chapters you’ll find some 4tH words as
well, but very sparingly.

You may find that some examples are not working with your specific Forth compiler. That may
have several reasons. First, your compiler may not support all ANS-Forth wordsets. Second, your
compiler may not be completely ANS-Forth compliant. I’ve tested most of these examples with
GForth or Win32Forth, which are (almost) 100% ANS-Forth compliant. Third, your compiler
might be case-sensitive.

The ANS-Forth standard is a very important document. I can only advise you to get it. You
should have no trouble finding it on the internet. I can only hope that the compiler you chose at
least documented its ANS-Forth compatibility.

This primer was written in the hope that it will be useful and that starting Forthers aren’t put
off by the high price of Forth textbooks. It is dedicated to Leo Brodie, who taught me much more
than just Forth.

Hans Bezemer

Den Haag, 2001-03-07



Chapter 2

Forth fundamentals

2.1 Making calculations without parenthesis

To use Forth you must understand Reverse Polish Notation. This is a way to write arithmetic
expressions. The form is a bit tricky for people to understand, since it is geared towards making it
eagsy for the computer to perform calculations; however, most people can get used to the notation
with a bit of practice.

Reverse Polish Notation stores values in a stack. A stack of values is just like a stack of books:
one value is placed on top of another. When you want to perform a calculation, the calculation
uses the top numbers on the stack. For example, here’s a typical addition operation:

12+

When Forth reads a number, it just puts the value onto the stack. Thus 1 goes on the stack, then
2 goes on the stack. When you put a value onto the stack, we say that you push it onto the stack.
When Forth reads the operator '+’, it takes the top two values off the stack, adds them, then
pushes the result back onto the stack. This means that the stack contains:

after the above addition. As another example, consider:
234+ %

(The "* stands for multiplication.) Forth begins by pushing the three numbers onto the stack.
When it finds the '+, it takes the top two numbers off the stack and adds them. (Taking a value
off the stack is called popping the stack.) Forth then pushes the result of the addition back onto
the stack in place of the two numbers. Thus the stack contains:

27

When Forth finds the *’ operator, it again pops the top two values off the stack. It multiplies
them, then pushes the result back onto the stack, leaving:

14



10 CHAPTER 2. FORTH FUNDAMENTALS

The following list gives a few more examples of Reverse Polish expressions. After each, we show
the contents of the stack, in parentheses.

72 - (5)
27 - (-5)
12 3 / (4)
-12 3/ (-4)
45+ 2 % (18)
452+ % (28)
452 % - (-6)

2.2 Manipulating the stack

You will often find that the items on the stack are not in the right order or that you need a copy.
There are stack-manipulators which can take care of that.

To display a number you use ’., pronounced "dot". It takes a number from the stack and displays
it. 'SWAP’ reverses the order of two items on the stack. If we enter:

23 . .cr
Forth answers:
32
If you want to display the numbers in the same order as you entered them, you have to enter:
2 3 swap . . cr
In that case Forth will answer:
2 3

You can duplicate a number using 'DUP’. If you enter:

Forth will complain that the stack is empty. However, if you enter:
2 dup . . cr

Forth will display:
2 2

Another way to duplicate a number is using ‘'OVER’. In that case not the topmost number of the
stack is duplicated, but the number beneath. E.g.

23dup . . . cr



2.3. DEEP STACK MANIPULATORS 11

will give you the following result:
332
But this one:
2 3 over . . . cr
will give you:
232

Sometimes you want to discard a number, e.g. you duplicated it to check a condition, but since
the test failed, you don’t need it anymore. 'DROP’ is the word we use to discard numbers. So
this:

2 3 drop .

will give you "2" instead of "3", since we dropped the "3".

The final one I want to introduce is 'TROT’. Most users find 'ROT’ the most complex one since
it has its effects deep in the stack. The thirdmost item to be exact. This item is taken from its
place and put on top of the stack. It is 'rotated’, as this small program will show you:

123 \ 1 is the thirdmost item
. . .cr \ display all numbers
( This will display ’3 2 1’ as expected)
123 \ same numbers stacked
rot \ performs a ’ROT’

. cr \ same operation

( This will display ’1 3 2’!)

2.3 Deep stack manipulators

There are two manipulators that can dig deeper into the stack, called 'PICK’ and "ROLL’ but I
cannot recommend them. A stack is NOT an array! So if there are some Forth-83 users out there,
I can only tell you: learn Forth the proper way. Programs that have so many items on the stack
are just badly written. Leo Brodie agrees with me.

If you are in ’deep’ trouble you can always use the returnstack manipulators. Check out that
section.

2.4 Pass arguments to functions

There is no easier way to pass arguments to functions as in Forth. Functions have another name
in Forth. We call them "words". Words take their "arguments" from the stack and leave the
"result" on the stack.

Other languages, like C, do exactly the same. But they hide the process from you. Because passing
data to the stack is made explicit in Forth it has powerful capabilities. In other languages, you
can get back only one result. In Forth you can get back several!

All words in Forth have a stack-effect-diagram. It describes what data is passed to the stack
in what order and what is returned. The word **’ for instance takes numbers from the stack,
multiplies them and leaves the result on the stack. It’s stack-effect-diagram is:



12 CHAPTER 2. FORTH FUNDAMENTALS
nl n2 -- n3

Meaning it takes number nl1 and n2 from the stack, multiplies them and leaves the product (number
n3) on the stack. The rightmost number is always on top of the stack, which means it is the first
number which will be taken from the stack. The word ’.’ is described like this:

Which means it takes a number from the stack and leaves nothing. Now we get to the most
powerful feature of it all. Take this program:

2 ( leaves a number on the stack)
3 ( leaves a number on the stack on top of the 2)
* ( takes both from the stack and leaves the result)

( takes the result from the stack and displays it)

Note that all data between the words '*” and . is passed implicitly! Like putting LEGO stones
on top of another. Isn’t it great?

2.5 Making your own words

Of course, every serious language has to have a capability to extend it. So has Forth. The only
thing you have to do is to determine what name you want to give it. Let’s say you want to make
a word which multiplies two numbers and displays the result.

Well, that’s easy. We’ve already seen how you have to code it. The only words you need are "*’
and ’.’. You can’t name it "*’ because that name is already taken. You could name it 'multiply’,
but is that a word you want to type in forever? No, far too long.

Let’s call it **.’. Is that a valid name? If you’ve programmed in other languages, you’ll probably
say it isn’t. But it is! The only characters you can’t use in a name are whitespace characters
(<CR>, <LF>, <space>, <TAB>). It depends on the Forth you’re using whether it is case-
sensitive or not, but usually it isn’t.

So "*.” is okay. Now how do we turn it into a self-defined word. Just add a colon at the beginning
and a semi-colon at the end:

That’s it. Your word is ready for use. So instead of:
2 3 % .

We can type:

2 3 *.

Y

And we can use our '*.” over and over again. Hurray, you’ve just defined your first word in Forth!



2.6. ADDING COMMENT 13

2.6 Adding comment
Adding comment is very simple. In fact, there are two ways to add comment in Forth. That is

because we like programs with a lot of comment.

The first form you’ve already encountered. Let’s say we want to add comment to this little
program:

2 3 *x,
So we add our comment:

: H This will multiply and print two numbers
2 3 *.

Forth will not understand this. It will desperately look for the words ’this’, *will’, etc. However
the word ’\” will mark everything up to the end of the line as comment. So this will work:

HE
2 3 *.

H \ This will multiply and print two numbers

There is another word called ’(’ which will mark everything up to the next ’)’ as comment. Yes,
even multiple lines. Of course, these lines may not contain a ’)’ or you’ll make Forth very confused.
So this comment will be recognized too:

: ; ( This will multiply and print two numbers)
2 3 *.

Note that there is a whitespace-character after both ’\’ and ’(’. This is mandatory!

2.7 Text-format of Forth source

Forth source can be simple ASCII-files. And you can use any layout as long a this rule is followed:
All words are separated by at least one whitespace character!

Well, in Forth everything is a word or becoming a word. Yes, even ’\’ and ’(’ are words! And you
can add all the empty lines or spaces or tabs you like, Forth won’t care and your harddisk supplier
either.

However, some Forths still use a special line editor, which works with screens. Screens are usually
1K blocks, divided into 16 lines of 64 characters. Explaining how these kind of editors work goes
beyond the scope of this manual. You have to check the documentation of your Forth compiler on
that. The files these editors produce are called blockfiles.



14 CHAPTER 2. FORTH FUNDAMENTALS
2.8 Displaying string constants

Displaying a string is as easy as adding comment. Let’s say you want to make the ultimate
program, one that is displaying "Hello world!". Well, that’s almost the entire program. The
famous ’hello world’ program is simply this in Forth:

.( Hello world!)

Enter this and it works. Yes, that’s it! No declaration that this is the main function and it is
beginning here and ending there. May be you think it looks funny on the display. Well, you can
add a carriage return by adding the word ’CR’. So now it looks like:

.( Hello world!) cr

Still pretty simple, huh?

2.9 Declaring variables
One time or another you’re going to need variables. Declaring a variable is easy.
variable one

The same rules for declaring words apply for variables. You can’t use a name that already has been
taken or you’ll get pretty strange results. A variable is a word too! And whitespace characters
are not allowed. Note that Forth is usually not case-sensitive!

2.10 Using variables

Of course variables are of little use when you can’t assign values to them. This assigns the number
6 to variable 'ONE’:

6 one !

We don’t call ’!” bang or something like that, we call it 'store’. Of course you don’t have to put a
number on the stack to use it, you can use a number that is already on the stack. To retrieve the
value stored in 'ONE’ we use:

one @

The word ’@’ is called ’fetch’ and it puts the number stored in ’one’ on the stack. To display it
you use ’.”:

one Q@ .

There is a shortcut for that, the word ’?’, which will fetch the number stored in ’'ONE’ and displays
it:

one 7



2.11. BUILT-IN VARIABLES 15

2.11 Built-in variables

Forth has two built-in variables you can use for your own purposes. They are called 'BASE’ and
’>IN’. ' BASE’ controls the radix at run-time, >IN’ is used by "'WORD’ and 'PARSE’.

2.12 What is a cell?

A cell is simply the space a number takes up. So the size of a variable is one cell. The size of a
cell is important since it determines the range Forth can handle. We’ll come to that further on.

2.13 Declaring and using constants

Declaring a simple constant is easy too. Let’s say we want to make a constant called 'FIVE’:
5 constant five

Now you can use 'FIVE’ like you would ’5’. E.g. this will print five spaces:
five spaces

The same rules for declaring words apply for constants. You shouldn’t use a name that already
has been taken. A constant is a word too! And whitespace characters are not allowed. Note that
Forth is usually not case-sensitive.

2.14 Built-in constants

There are several built-in constants. Of course, they are all literals in case you wonder. Here’s a
list. Refer to the glossary for a more detailed description:

1. BL

2. FALSE
3. PAD
4. TIB

5. TRUE

2.15 Using booleans

Booleans are expressions or values that are either true or false. They are used to conditionally
execute parts of your program. In Forth a value is false when it is zero and true when it is non-zero.
Most booleans come into existence when you do comparisons. This one will determine whether
the value in variable "VAR’ is greater than 5. Try to predict whether it will evaluate to true or
false:



16 CHAPTER 2. FORTH FUNDAMENTALS

variable var
4 var !
var @ 5 > .

No, it wasn’t! But hey, you can print booleans as numbers. Well, they are numbers. But with a
special meaning as we will see in the next section.

2.16 IF-ELSE constructs
Like most other languages you can use IF-ELSE constructs. Let’s enhance our previous example:

variable var

4 var !
: test
var @ 5 >
if ." Greater" cr
else ." Less or equal" cr
then
5
test

So now our program does the job. It tells you when it’s greater and when not. Note that contrary
to other languages the condition comes before the 'TF’ and "THEN’ ends the IF-clause. In other
words, whatever path the program takes, it always continues after the "THEN’. A tip: think of
"THEN’ as "ENDIF’..

2.17 FOR-NEXT constructs

Forth does also have FOR-NEXT constructs. The number of iterations is known in this construct.
E.g. let’s print the numbers from 1 to 10:

: test
11 1 do i . cr loop

test

The first number presents the limit. When the limit is goes beyond the limit minus one the loop
terminates. The second number presents the initial value of the index. That’s where it starts of.
So remember, this loop iterates at least once! You can use >?DQ’ instead of 'DO’. That will not
enter the loop if the limit and the index are the same to begin with:

: test
0 0 ?do i . cr loop

test



2.18. WHILE-DO CONSTRUCTS 17

T’ represents the index. It is not a variable or a constant, it is a predefined word, which puts the
index on the stack, so ’.” can get it from the stack and print it.

But what if T want to increase the index by two? Or want to count downwards? Is that possible.
Sure. There is another construct to do just that. Okay, let’s take the first question:

: test
11 1 do i . cr 2 +loop

test

This one will produce exactly what you asked for. An increment by two. This one will produce
all negative numbers from -1 to -11:

: test
-11 -1 do i . cr -1 +loop

test

Why -11?7 Because the loop terminates when it reached the limit minus one. And when you’re
counting downward, that is -11. You can change the step if you want to, e.g.:

: test
32767 1 do i . i +loop

test

This will print: 1, 2, 4, 8, all up to 16384. Pretty flexible, I guess. You can break out of a loop by
using 'LEAVE”:

: test
10 0 do i1 dup 5 = if drop leave else . cr then loop

test

2.18 WHILE-DO constructs

A WHILE-DO construction is a construction that will perform zero or more iterations. First a
condition is checked, then the body is executed. Then it will branch back to the condition. In
Forth it looks like this:

BEGIN <condition> WHILE <body> REPEAT

The condition will have to evaluate to TRUE in order to execute the body. If it evaluates to
FALSE it branches to just after the REPEAT. This example does a Fibbonaci test.



18 CHAPTER 2. FORTH FUNDAMENTALS

: fib 0 1
begin
dup >r rot dup r> > \ condition
while
rot rot dup rot + dup . \ body
repeat
drop drop drop ; \ after loop has executed

You might not understand all of the commands, but we’ll get to that. If you enter "20 fib" you
will get:

123581321

This construct is particularly handy if you are not sure that all data will pass the condition.

2.19 REPEAT-UNTIL constructs

The counterpart of WHILE-DO constructs is the REPEAT-UNTIL construct. This executes the
body, then checks a condition at "UNTIL’. If the expression evaluates to FALSE, it branches back
to the top of the body (marked by BEGIN’) again. It executes at least once. This program
calculates the largest common divisor.

: lcd
begin
swap over mod \ body
dup 0= \ condition
until drop . ;

If you enter "27 21 lcd" the programs will answer "3".

2.20 Infinite loops

In order to make an infinite loop one could write:

: test
begin ." Diamonds are forever" cr 0 until

test
But there is a nicer way to do just that:

: test
begin ." Diamonds are forever" cr again

test

This will execute until the end of times, unless you exit the program another way.



2.21. GETTING A NUMBER FROM THE KEYBOARD 19
2.21 Getting a number from the keyboard

Let’s start with "you’re not supposed to understand this". If you dig deeper in Forth you’ll find
out why it works the way it works. But if you define this word in your program it will read a
number from the keyboard and put it on the stack. If you haven’t entered a valid number, it will
prompt you again.

S" MAX-N" ENVIRONMENT? \ query environment
[IF] \ if successful
NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[THEN]
: number (a--n)
0. Rot dup 1+ c@ [char] - = >r count r@ if 1 /string then >number nip

0= if d>s r> if negate then else r> drop 2drop (error) then ;

input# (--mn
begin

refill drop bl word number ( n)

dup (error) <> (nf)

dup 0= (nf -f)

if swap drop then (f | nt)
until ;

2.22 Aligning numbers

You may find that printing numbers in columns (I prefer "right-aligned") can be pretty hard.
That is because the standard word to print numbers (°.”) prints the number and then a trailing
space. That is why R’ was added.

The word ".R’ works just like ’.” but instead of just printing the number with a trailing space ".R’
will print the number right-aligned in a field of N characters wide. Try this and you will see the
difference:

140 . cr
150 5 .r cr

In this example the field is five characters wide, so ’150’ will be printed with two leading spaces.



20

CHAPTER 2. FORTH FUNDAMENTALS



Chapter 3

Arrays and strings

3.1 Declaring arrays of numbers

You can make arrays of numbers very easily. It is very much like making a variable. Let’s say we
want an array of 16 numbers:

create sixteen 16 cells allot

That’s it, we’re done!

3.2 Using arrays of numbers

You can use arrays of numbers just like variables. The array cells are numbered from 0 to N, N
being the size of the array minus one. Storing a value in the Oth cell is easy. It works just like a
simple variable:

5 sixteen 0 cells + !

Which will store ’5” in the Oth cell. So storing 7’ in the 8th cell

is done like this:
7 sixteen 8 cells + !
Isn’t Forth wonderful? Fetching is done the same of course:

sixteen 0 cells + @
sixteen 4 cells + @

Plain and easy.

21



22 CHAPTER 3. ARRAYS AND STRINGS

3.3 Creating arrays of constants

Making an array of constants is quite easy. First you have to define the name of the array by using
the word ’CREATE. Then you specify all its elements. All elements (even the last) are terminated
by the word ’,”. An example:

create sizes 18 , 21 , 24 , 27 , 30 , 255 ,

Please note that ’,” is a word! It has to be separated by spaces on both ends.

3.4 Using arrays of constants

Accessing an array of constants is exactly like accessing an array of numbers. In an array of
numbers you access the Oth element like this:

sixteen 0 cells + @
When you access the first element of an array of constants you use this construction:
sizes 0 cells + @

So I don’t think you’ll have any problems here.

3.5 Creating strings

In Forth you have to define the maximum length of the string, like Pascal:
create name 10 chars allot

Note that the string variable includes the count byte. That is a special character that tells Forth
how long a string is. You usually don’t have to add that yourself because Forth will do that for
you. But you will have to reserve space for it.

That means that the string "name" we just declared can contain up to nine characters *fAND*
the count byte. These kind of strings are usually referred to as counted strings.

E.g. when you want to define a string that has to contain "Hello!" (without the quotes) you have
to define a string that is at least 7 characters long:

create hello 7 chars allot

When you later refer to the string you just defined its address is thrown on the stack. An address
is simply a number that refers to its location. As you will see you can work with string-addresses
without ever knowing what that number is. But because it is a number you can manipulate it like
any other number. E.g. this is perfectly valid:

hello \ address of string on stack
dup \ duplicate it
drop drop \ drop them both

In the next section we will tell you how to get "Hello!" into the string.



3.6. INITIALIZING STRINGS 23
3.6 Initializing strings

You can initialize a string with the ’S"’ word. You haven’t seen this one yet, but we will discuss
it in more depth later on. If you want the string to contain your first name use this construction:

: place over over >r >r char+ swap chars cmove r> r> c! ;
: scopy dup >r place r> ; ( al n a2 -- a2)

create name 16 chars allot
s" Hello! " name scopy

The word "SCOPY” copies the contents of a string constant into a string-variable. As a matter of
fact, it does even more. It will leave the stack in the same state as if you had just written:

name

So you can continue to manipulate the string with all the words that we’ll introduce to you in the
following sections. This value on the stack is the ’string address’. For this moment you can ignore
it and simply drop the value. BTW, "PLACE” is a more common word!, which does not leave
the address.

If you still don’t understand it yet, don’t worry. As long as you use this construction, you’ll get
what you want. Just remember that assigning a string constant to a string that is too short will
result in an error or even worse, corrupt other strings.

3.7 Getting the length of a string

You get the length of a string by using the word "COUNT". It will not only return the length of
the string, but also the string address. It is illustrated by this short program:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ; ( al n a2 -- a2)

define string greeting
set string to ’Hello!’
drop the value SCOPY left
get string length

print the length

discard the address

32 string greeting

S" Hello!" greeting scopy
drop

greeting count

.( String length: ) . cr
drop

P

You usually have nothing to do with the string address. However, it may be required by other
words like we will see in the following section. If you just want the bare length of the string you
can always define a word like "length$’:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;
: length$ count swap drop ;

create greeting 32 cells allot \ define string greeting

! Although not part of the ANS-Forth standard.



24 CHAPTER 3. ARRAYS AND STRINGS

s" Hello!" greeting scopy \ set string to ’Hello!’
drop \ drop the value SCOPY left
greeting length$ \ get string length

.( String length: ) . cr \ print the length

We wrote in previous sections that "SCOPY” left a value on the stack that was equivalent with
writing the name of the string variable. We can now see why "SCOPY” does that. Instead of
writing:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;
: length$ count swap drop ;

create greeting 32 cells allot
s" Hello!" greeting scopy
drop

greeting length$

define string greeting
set string to ’Hello!’
drop the value SCOPY left
get string length

We could write:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;
: length$ count swap drop ;

create greeting 32 cells allot \ define string greeting
s" Hello!" greeting scopy \ set string to ’Hello!’
length$ \ get string length

This kind of optimization makes a Forth program faster and more compact, which is a rare thing
these days!

3.8 Printing a string variable

Printing a string variable is pretty straight forward. The word that is required to print a string
variable is "TYPE’. It requires the string address and the number of characters it has to print.
Yes, that are the values that are left on the stack by "COUNT’! So printing a string means issuing
both "COUNT’ and "TYPE”:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;

create greeting 32 cells allot \ define string greeting
s" Hello!" greeting scopy \ set string to ’Hello!’
count type cr \ print the string

If you don’t like this you can always define a word like "PRINTS$’:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;

: print$ count type ;

create greeting 32 cells allot \ define string greeting
s" Hello!" greeting scopy \ set string to ’Hello!’
print$ cr \ print the string



3.9. COPYING A STRING VARIABLE 25
3.9 Copying a string variable

You might want to copy one string variable to another. There is a special word for that, named
"CMOVE’. It takes the two strings and copies a given number of characters from the source to the
destination. Let’s take a look at this example:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;

create one 16 chars allot \ define the first string
create two 16 chars allot \ define the second string

s" Greetings!" one scopy \ initialize string one

dup \ save the real address

count \ get the length of string one
1+ \ account for the count byte
swap drop \ get the real address

two swap \ get the order right

cmove \ copy the string

two count type cr \ print string two

The most difficult part to understand is probably why and how to set up the data for ’'CMOVE’.
Well, '"CMOVE’ wants to see these values on the stack:

source destination #chars
With the expression:
one count
We get these data on the stack:
source+l length
But the count byte hasn’t been accounted for so far. That’s why we add:
1+

So now this parameter has the right value. Now we have to restore the true address of the string
and tell ’CMOVE’ where to copy the contents of string one to. Initially, ’SCOPY’ returned the
correct address. That is why we saved it using:

dup
Now we’re getting rid of the "corrupted" address by issuing:
swap drop

This is what we got right now:



26 CHAPTER 3. ARRAYS AND STRINGS

source #chars

If we simply add:
two

The data is still not presented in the right order:
source #chars destination

So we add the extra 'SWAP’ in order to get it right. Of course you may define a word that takes
care of all that:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;

copy$ swap dup count 1+ swap drop rot swap cmove ;

create one 32 chars allot
create two 32 chars allot
s" Greetings!" one scopy
two copy$

You may wonder why we keep on defining words to make your life easier. Why didn’t we simply
define these words in the compiler instead of using these hard to understand words? Sure, but I

didn’t write the standard. However, most Forths allow you to permanently store these words in
their vocabulary. Check your documentation for details.

3.10 Slicing strings

Slicing strings is just like copying strings. We just don’t copy all of it and we don’t always start
copying at the beginning of a string. We’ll show you what we mean:

: place over over >r >r char+ swap chars cmove r> r> c! ;
scopy dup >r place r> ;

: nextchar dup dup c@ 1- swap char+ c! char+ ;

create one 32 chars allot \ define string one

s" Hans Bezemer" one scopy \ initialize string one

dup count type cr \ duplicate and print it
nextchar \ move one character forward
dup count type cr \ duplicate and print it again
nextchar \ move one character forward
dup count type cr \ duplicate and print it again
nextchar \ move one character forward
count type cr \ print it for the last time

First it will print "Hans Bezemer", then "ans Bezemer", then "ns Bezemer" and finally "s Beze-
mer". The word CHAR+ is usually equivalent to 1+, but Forth was defined to run on unusual
hardware too - the CPU of a pocket calculator could be a nibble-machine (4-bit) so each CHAR,
occupies in fact two addresses. And of course, some Forth systems may treat CHAR to be a 16-bit
unicode. If we want to discard the first name at all we could even write:



3.10. SLICING STRINGS

: place over over >r >r char+ swap

create one 32 chars allot
s" Hans Bezemer" omne scopy
dup c@ 5 -

swap 5 chars + dup rot swap c!
count type cr

scopy dup >r place r> ;

P

chars cmove r> r> c! ;

define string ome
initialize string omne

copy address and get count
save new count

print sliced string

27

The five characters we want to skip are the first name (which is four characters) and a space
(which adds up to five). There is no special word for slicing strings. There is a smarter way to
handle strings in Forth, which we will discuss later on. But if you desperately need slicing you
might want to use a word like this. It works just like ’"CMOVE’ with an extra parameter:

slice$
swap
over over
>r >r >r >r
+
r> r>
char+
swap cmove
r> r>
c!

P

reverse dest and #chars
copy the dest and #chars
store on the return stack
make address to the source
restore dest and #chars
make address to destination
copy the string

restore dest and #chars

save

This is another example of "you’re not supposed to understand this". You call it with:

source index-to-source destination #chars

The index-to-source starts counting at one. So this will copy the first name to string "two" and

print it:

: place over over >r >r char+ swap

create one 32 chars allot
create two 32 chars allot

s
1

two count type cr

scopy dup >r place r> ;

slice$
swap
over over
>r >r >r >r
+
r> r>
char+
swap cmove
r> r>
c!

P A A

" Hans Bezemer" one scopy

two 4 slice$

P

chars cmove r> r> c! ;

reverse dest and #chars
copy the dest and #chars
store on the return stack
make address to the source
restore dest and #chars
make address to destination
copy the string

restore dest and #chars
save

declare string one
declare string two
initialize string ome
slice the first name
print string two



28

CHAPTER 3. ARRAYS AND STRINGS

This will slice the last name off and store it in string "two":

: place over over >r >r char+ swap

scopy dup >r place r> ;

slice$
swap
over over
>r >r >r >r
+
r> r>
char+
swap cmove
r> r>
c!

create one 32 chars allot
create two 32 chars allot
s" Hans Bezemer" one scopy
6 two 7 slice$

two count type cr

PP A e

P

chars cmove r> r> c! ;

reverse dest and #chars
copy the dest and #chars
store on the return stack
make address to the source
restore dest and #chars
make address to destination
copy the string

restore dest and #chars
save

declare string one
declare string two
initialize string omne
slice the first name
print string two

Since the last name is seven characters long and starts at position six (start counting with one!).
Although this is very "Basic" way to slice strings, we can do this kind of string processing the
Forth way. It will probably require less stack manipulations.

3.11 Appending strings

There is no standard word in Forth to concatenate strings. As a matter of fact, string manipulation
is one of Forths weakest points. But since we are focused here on doing things, we will present

you a word which will get the work done.

The word ’APPEND’ appends two strings. In this example string "one" holds the first name and
"Bezemer” is appended to string "one" to form the full name. Finally string "one" is printed.

: place over over >r >r char+ swap chars cmove r> r> c! ;

: append
over over
>r >r
count chars +
swap chars move
r> r>
dup >r
c@ +
r> c!

create one 32 chars allot
s" Hans " one place

s" Bezemer" one append
one count type cr

P

P

al n2 a2 --)

duplicate target and count
save them on the return stack
calculate offset target

now move the source string
get target and count
duplicate target and save one
calculate new count

get address and store

define string ome
initialize first string
append ’Bezemer’ to string
print first string



3.12. COMPARING STRINGS 29

Of course, you can also fetch the string to be appended from a string variable by using '"COUNT".

3.12 Comparing strings

If you ever sorted strings you know how indispensable comparing strings is. As we mentioned
before, there are very few words in Forth that act on strings. But here is a word that can compare
two strings.

: place over over >r >r char+ swap chars cmove r> r> c! ;
: scopy dup >r place r> ;

create one 32 chars allot \ define string one
create two 32 chars allot \ define string two
: test

s" H. Bezemer" one scopy count \ initialize string one

s" R. Bezemer" two scopy count \ initialize string two

compare \ compare two strings
if
." Strings differ" \ message: strings ok
else
." Strings are the same" \ message: strings not ok
then
cr \ send CR
3
test

Simply pass two strings to '"COMPARE’ and it will return a TRUE flag when the strings are
different. This might seem a bit odd, but strcmp() does exactly the same. If you don’t like that
you can always add ’0=" to the end of '"COMPARE’ to reverse the flag.

3.13 Removing trailing spaces

You probably know the problem. The user of your well-made program types his name and hits
the spacebar before hitting the enter-key. There you go. His name will be stored in your datafile
with a space and nobody will ever find it.

In Forth there is a special word called ~TRAILING’ that removes the extra spaces at the end with
very little effort. Just paste it after 'COUNT’. Like we did in this example:

: place over over >r >r char+ swap chars cmove r> r> c! ;
: scopy dup >r place r> ;

create one 32 chars allot define a string

s" Hans Bezemer string with trailing spaces

~

one scopy now copy it to string omne

dup \ save the address



30 CHAPTER 3. ARRAYS AND STRINGS

U \ print a bracket
count type o method o rintin

yp \ old hod of printing
A er \ print bracket and newline
o print a bracket

count -trailing type new method of printing

~

O er print a bracket and newline

You will see that the string is printed twice. First with the trailing spaces, second without trailing
spaces. And what about leading spaces? Patience, old chap. You’ve got a lot of ground to cover.

3.14 String constants and string variables

Most computer languages allow you to mix string constants and string variables. Not in Forth. In
Forth they are two distinct datatypes. To print a string constant you use the word ’."’. To print
a string variable you use the "COUNT TYPE’ construction.

There are only two different actions you can do with a string constant. First, you can define one
using ’s"’. Second, you can print one using ’."’.

There are two different ways to represent a string variable in Forth. First, by using just its address,
the so-called counted string. Forth relies on the count byte to find the end of the string. Second,
by using its address and its length. This requires two values.

The word "TYPE’ requires the latter form. Therefore, you have to convert a counted string in
order to print it. You can convert an counted string to an "address-count string" with the word
"COUNT”. If you moved a string (by using ’"CMOVE’) without taking the count byte into account
you have to set it yourself.

This may seem a bit mind-boggling to you now, but we’ll elaborate a bit further on this subject
in the following sections.

3.15 The count byte

The count byte is used to set the length of a counted string. It has nothing to do with British
royalty! It is simply the very first byte of a string, containing the length of the actual string
following it.

3.16 Printing individual characters

"T already know that!"

Sure you do. If you want to print "G" you simply write:
(®

Don’t you? But what if you want to use a TAB character (ASCII 9)?7 You can’t type in that one
so easily, huh? You may even find it doesn’t work at all!

Don’t ever use characters outside the ASCII range 32 to 127 decimal. It may or may not work,
but it won’t be portable anyway. the word 'EMIT’ may be of some help. If you want to use the
TAB-character simply write:



3.17. GETTING ASCII VALUES 31
9 emit

That works!

3.17 Getting ASCII values

Ok, '"EMIT’ is a nice addition, but it has its drawbacks. What if you want to emit the character
"G". Do you have to look up the ASCII value in a table? No. Forth has another word that can
help you with that. It is called ’"CHAR’. This will emit a "G":

char G emit

The word ’"CHAR’ looks up the ASCII-value of "G" and leave it on the stack. Note that ‘CHAR’
only works with printable characters (ASCII 33 to 127 decimal).

3.18 When to use [CHAR] or CHAR

There is not one, but two words for getting the ASCII code of a character, [CHAR] and "CHAR’.
Why is that? Well, the complete story is somewhat complex, but one is for use inside colon
definitions and one is for use outside colon definitions. And ’CHAR’ isn’t the only word which is
affected. We’ve put it all together in a neat table for you:

| INSIDE A DEFINITION | OUTSIDE A DEFINITION |
‘7’ ‘(

CHAR] CHAR
7] b

For example, this produces the same results:

: Hello ." Hello world" [char] ! emit cr ; Hello
.( Hello world!) char ! emit cr

You should also have noticed in the meanwhile that you can’t use control structures like DO..LOOP
or IF..THEN outside colon definitions. And not only these, others like ’C”” can’t be used as well.
Real Forth-ers call this "inside a colon definition” thing compilation mode and working from the
prompt interpretation mode. You can do really neat things with it, but that is still beyond you
now.

3.19 Printing spaces
If you try to print a space by using this construction:
char emit

You will notice it won’t work. Sure, you can also use:



32 CHAPTER 3. ARRAYS AND STRINGS

But that isn’t too elegant. You can use the built-in constant "BL’ which holds the ASCII-value of
a space:

bl emit

That is much better. But you can achieve the same thing by simply writing:
space

Which means that if you want to write two spaces you have to write:
space space

If you want to write ten spaces you either have to repeat the command 'SPACE’ ten times or use a
DO-LOOP construction, which is a bit cumbersome. Of course, Forth has a more elegant solution
for that:

10 spaces

Which will output ten spaces. Need I say more?

3.20 Fetching individual characters
Take a look at this small program:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot \ define string one
s" Hans" one place \ initialize string one

What is the second character of string "one"? Sure, its an "a". But how can you let your program
determine that? You can’t use 'Q’ because that word can only access variables.

Sure, you can do that in Forth, but it requires a new word, called ’C@’. Think of a string as an
array of characters and you will find it much easier to picture the idea. Arrays in Forth always
start with zero instead of one, but that is the count byte. So accessing the first character might
be done with:

one 1 chars + c@
This is the complete program:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot \ define string one
s" Hans" one place \ initialize string one
one 2 chars + c@ \ get the second character

emit cr \ print it



3.21. STORING INDIVIDUAL CHARACTERS 33
3.21 Storing individual characters

Storing individual characters works just the same. Keep that array of characters in mind. When
we want to fetch a variable we write:

my_var @
When we want to store a value in a variable we write:
5 my_var !

Fetching only requires the address of the variable. Storing requires both the address of the variable
*AND* the value we want to store. On top of the stack is the address of the variable, below that is
value we want to store. Keep that in mind, this is very important. Let’s say we have this program:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot \ define string one

s" Hans" one place \ initialize string one

Now we want to change "Hans" to "Hand". If we want to find out what the 4th character of string
"one" is we write:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot \ define string one
s" Hans" one place \ initialize string one
one 4 chars + c@ \ get the fourth character

Remember, we start counting from one! If we want to store the character "d" in the fourth
character, we have to use a new word, and (yes, you guessed it right!) it is called 'C!:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot \ define string one

s" Hans" one place \ initialize string omne

one 4 chars + \ address of the fourth char
char d \ we want to store ’d’

swap \ get the order right

c! \ now store ’d’

If we throw the character "d" on the stack before we calculate the address, we can even remove
the 'SWAP’:

: place over over >r >r char+ swap chars cmove r> r> c! ;

define string ome

we want to store ’d’
initialize string ome
address of the fourth char
now store ’4d’

create one 32 chars allot
char d

s" Hans" one place

one 4 chars +

P

c!



34 CHAPTER 3. ARRAYS AND STRINGS

We will present the very same programs, but now with stack-effect-diagrams in order to explain
how this works. We will call the index ’i’, the character we want to store ’c’ and the address of
the string ’a’. By convention, stack-effect-diagrams are enclosed by parenthesis.

If you create complex programs this technique can help you to understand more clearly how your
program actually works. It might even save you a lot of debugging. This is the first version:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot -9

s" Hans" one place ¢ --)
one (a)

4 chars (ai)

+ ( ati)
char d ( at+ti c)
swap ( c a+i)
c! -2

Now the second, optimized version:

: place over over >r >r char+ swap chars cmove r> r> c! ;

create one 32 chars allot ¢ --)
char d (e

s" Hans" one place ( c)

one (ca)

4 chars (cai)
+ ( c at+i)
c! -2

3.22 Getting a string from the keyboard

Of course, you don’t want to initialize strings all your life. Real applications get their input from
the keyboard. We’ve already shown you how to get a number from the keyboard. Now we turn
to strings.

When programming in BASIC, strings usually have an undefined length. Some BASICs move
strings around in memory, others have to perform some kind of "garbage-collection". Whatever
method they use, it takes up memory and processor-time.

Forth forces you to think about your application. E.g. when you want to store somebodies name
in a string variable, 16 characters will be too few and 256 characters too many. But 64 characters
will probably do.

But that poses a problem when you want to get a string from the keyboard. How can you prevent
that somebody types a string that is just too long?

The word ’ACCEPT’ takes two arguments. First, the string variable where you want to save the
input and second, the maximum number of characters it can take. But there is a catch. This
program can get you into trouble:

64 constant #name \ length of string
create name #name chars allot \ define string ’name’
name #name accept \ input string

name 1+ swap type cr \ swap count and print



3.23. WHAT IS THE TIB? 35

Since 64 characters *PLUS* the count byte add up to 65 characters. You will probably want to
use this definition instead:

: saccept 1- swap 1+ swap accept ; \ define safe ’ACCEPT’

64 constant #name \ length of string
create name #name chars allot \ define string ’name’
name #name saccept \ input string

name 1+ swap type cr \ print string

This "safe" version decrements the count so the user input will fit nicely into the string variable.
In order to terminate it you write:

: saccept 1- swap 1+ swap accept ; \ define safe ’ACCEPT’

64 constant #name \ length of string
create name #name chars allot \ define string ’name’
name dup #name saccept \ input string

swap c! \ set count byte

The word ’ACCEPT’ always returns the number of characters it received. This is the end of the
second level. Now you should be able to understand most of the example programs and write
simple ones. I suggest you do just that. Experience is the best teacher after all.

3.23 What is the TIB?

The TIB stands for "Terminal Input Buffer" and is used by one single, but very important word
called "REFILL’. In essence, 'REFILL’ does the same thing as ’ACCEPT’, except that it has a
dedicated area to store its data and sets up everything for parsing. Whatever you type when you
call ’REFILL’, it is stored in the TIB.

3.24 What is the PAD?

The PAD is short for "scratch-pad". It is a temporary storage area for strings. It is heavily
used by Forth itself, e.g. when you print a number the string is formed in the PAD. Yes, that’s
right: when you print a number it is first converted to a string. Then that string is 'COUNT’ed
and "TYPE’d. You can even program that subsystem yourself as we will see when we encounter
formatted numbers.

3.25 How do I use TIB and PAD?

In general, you don’t. The TIB is a system-related area and it is considered bad practice when
you manipulate it yourself. The PAD can be used for temporary storage, but beware! Temporary
really means temporary. A few words at the most, provided you don’t generate any output or do
any parsing.

Think of both these areas as predefined strings. You can refer to them as "TIB’ and "PAD’. You
don’t have to declare them in any way. This program is perfectly alright:



36 CHAPTER 3. ARRAYS AND STRINGS

: place over over >r >r char+ swap chars cmove r> r> c! ;

s" Hello world" pad place \ store a string in pad
one count type cr \ print contents of the pad

3.26 Temporary string constants

Hey, haven’t we already seen this? Yes, you have.

s" This is a string" type cr

No ’COUNT’? No. ’S"’ leaves its address and its length on the stack, so we can call "TYPE’ right
away. Note that this string doesn’t last forever. If you wait too long it will be overwritten. It
depends on your system how long the string will last.

3.27 Simple parsing

We have already discussed 'REFILL’ a bit. We’ve seen that it is closely related to ’ACCEPT".
'REFILL’ returns a true flag if all is well. When you use the keyboard it usually is, so we can
safely drop it, but we will encounter a situation where this flag comes in handy. If you want to
get a string from the keyboard, you only have to type:

refill drop \ get string from keyboard

Every next call to "/REFILL’ will overwrite any previously entered string. So if you want to do
something with that string you’ve got to get it out of there, usually to one of your own strings.

But if accessing the TIB directly is not the proper way, what is? The use of 'REFILL’ is closely
linked to the word "'WORD’, which is a parser. "WORD’ looks for the delimiter, whose ASCII
code is on the stack.

If the string starts with the delimiter, it will skip this and all subsequent occurrences until it finds
a string. Then it will look for the delimiter again and slice the string right there. It then copies
the sliced string to PAD and returns its address. This extremely handy when you want to obtain
filtered input. E.g. when you want to split somebodies name into first name, initials and lastname:

Hans L. Bezemer
Just use this program:

: test
." Give first name, initials, lastname: "

refill drop \ get string from keyboard
bl word \ parse first name

." First name: " \ write message

count type cr \ type first name

bl word \ parse initials

" Initials : " \ write message

count type cr \ type initials

bl word \ parse last name



3.28. CONVERTING A STRING TO A NUMBER 37

." Last name : " \ write message
count type cr \ write last name

test

You don’t have to parse the entire string with the same character. This program will split up an
MS-DOS filename into its components:

: test
." DOS filename: " refill \ input a DOS filename
drop cr \ get rid of the flag
[char] : word \ parse drive
." Drive: " count type ." :" cr
\ print drive
begin
[char] \ word \ parse path
dup count 0<> \ if not a NULL string
while \ print path
drop ." Path : " count type cr
repeat \ parse again
drop drop \ discard addresses
test

If "WORD’ reaches the end of the string and the delimiter is still not found, it returns the remainder
of that string. If you try to parse beyond the end of the string, it returns a NULL string. That is
an empty string or, in other words, a string with length zero.

Therefore, we checked whether the string had zero length. If it had, we had reached the end of
the string and further parsing was deemed useless.

3.28 Converting a string to a number

We now learned how to parse strings and retrieve components from them. But what if these
components are numbers? Well, there is a way in Forth to convert a string to a number, but like
every number-conversion routine it has to act on invalid strings. That is, strings that cannot be
converted to a valid number.

This implementation uses an internal error-value, called ’(ERROR)’. The constant ’(ERROR)’ is
a strange number. You can’t negate it, you can’t subtract any number from it and you can’t print
it. If 'NUMBER’ can’t convert a string it returns that constant. Forth has its own conversion
word called ">NUMBER’, but that is a lot harder to use. Let’s take a look at this program:

S" MAX-N" ENVIRONMENT? \ query environment

[IF] \ if successful

NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[THEN]

: number 0. Rot dup 1+ c@ [char] - = >r count r@ if 1 /string



38 CHAPTER 3. ARRAYS AND STRINGS

then >number nip 0= if d>s r> if negate then else r> drop
2drop (error) then ;

: test

." Enter a number: " \ write prompt

refill drop \ enter string

bl word \ parse string

number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid

." You didn’t enter a valid number!" drop cr
else \ print if valid
." The number was: " . cr
then

test

You first enter a string, then it parsed and "WORD?’ returns the address where that string is
stored. 'NUMBER' tries to convert it. If ' NUMBER’ returns '(ERROR)’ it wasn’t a valid string.
Otherwise, the number it right on the stack, waiting to be printed. That wasn’t so hard, was it?

3.29 Controlling the radix

If you are a programmer, you know how important this subject is to you. Sometimes, you want
to print numbers in octal, binary or hex. Forth can do that too. Let’s take the previous program
and alter it a bit:

S" MAX-N" ENVIRONMENT? \ query environment

[IF] \ if successful

NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[THEN]

: number 0. Rot dup 1+ c@ [char] - = >r count r@ if 1 /string

then >number nip 0= if d>s r> if negate then else r> drop
2drop (error) then ;

: test
." Enter a number: " \ write prompt
refill drop \ enter string
bl word \ parse string
number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
hex
." The number was: " . cr
then

test



3.29. CONTROLLING THE RADIX 39

We added the word "HEX’ just before printing the number. Now the number will be printed
in hexadecimal. Forth has a number of words that can change the radix, like 'DECIMAL’ and
’OCTAL’. They work in the same way as "HEX’.

Forth always starts in decimal. After that you are responsible. Note that all radix control follows
the flow of the program. If you call a self-defined word that alters the radix all subsequent
conversion is done too in that radix:

S" MAX-N" ENVIRONMENT? \ query environment

[IF] \ if successful

NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[THEN]

: number 0. Rot dup 1+ c@ [char] - = >r count r@ if 1 /string

then >number nip 0= if d>s r> if negate then else r> drop
2drop (error) then ;

.hex hex . ; \ print a number in hex
: test
." Enter a number: " \ write prompt
refill drop \ enter string
bl word \ parse string
number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
." The number was: " .hex cr
then
3
test

In this example not only that single number is printed in hex, but also all subsequent numbers
will be printed in hex! A better version of the ".HEX" definition would be:

.hex hex . decimal ;

Since that one resets the radix back to decimal. Words like "HEX’ do not only control the output
of a number, but the input of numbers is also affected:

S" MAX-N" ENVIRONMENT? \ query environment

[IF] \ if successful

NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[THEN]

: number 0. Rot dup 1+ c@ [char] - = >r count r@ if 1 /string

then >number nip 0= if d>s r> if negate then else r> drop
2drop (error) then ;

: test
." Enter a number: " \ write prompt



40 CHAPTER 3. ARRAYS AND STRINGS

refill drop \ enter string
bl word \ parse string
hex \ convert hexadecimal
number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
dup
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr
then
3
test

"NUMBER’ will now also accept hexadecimal numbers. If the number is not a valid hexadecimal
number, it will return >(ERROR)’. You probably know there is more to radix control than ’OC-
TAL’, "HEX’ and "DECIMAL’. No, we have not forgotten them. In fact, you can choose any radix
between 2 and 36. This slightly modified program will only accept binary numbers:

S" MAX-N" ENVIRONMENT? \ query environment

[IF] \ if successful

NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[THEN]

: number 0. Rot dup 1+ c@ [char] - = >r count r@ if 1 /string

then >number nip 0= if d>s r> if negate then else r> drop
2drop (error) then ;

: binary 2 base ! ;

: test
." Enter a number: " \ write prompt
refill drop \ enter string
bl word \ parse string
binary \ convert hexadecimal
number dup \ convert to a number
(error) = \ test for valid number
if \ if not valid
." You didn’t enter a valid number!" drop cr
else \ print if valid
dup \ both decimal and hex
." The number was: " decimal . ." decimal" cr
." The number was: " hex . ." hex" cr
then
3
test

"BASE’ is a predefined variable that enables you to select any radix between 2 and 36. This makes
Forth very flexible:

hex 02B decimal . cr



3.30. PICTURED NUMERIC OUTPUT 41
However, this won’t work:

: wont-work hex 02B decimal . cr ;
But this will:

hex
: will-work 02B decimal . cr ;

Why that? Well, "THEX’ will just be compiled, not executed. So when Forth tries to compile "02B”,
it doesn’t recognize it as a hexadecimal number and will try to find word ’02B’. Which it can’t of
course. Note that after "WILL-WORK?” has been compiled all numbers following it will stuill be
compiled as hexadecimal numbers. Why? Because 'DECIMAL’ is compiled too! You should place
a 'DECIMAL’ outside the definition in order to reset the radix. BTW, it is always a good idea to
add a leading zero to a hexadecimal number. For example, is this a hex number or a word:

face

3.30 Pictured numeric output

You probably have used this before, like when writing Basic. Never heard of "PRINT USING.."?
Well, it is a way to print numbers in a certain format. Like telephone-numbers, time, dates, etc.
Of course Forth can do this too. In fact, you’ve probably used it before. Both ’.” and ’.R’ use the
same internal routines. They are called just before a number is printed.

This numeric string is created in the PAD and overwritten with each new call. But we’ll go into
that a bit later on.

What you have to remember is that you define the format reverse. What is printed first, is defined
last in the format. So if you want to print:

060-5556916
You have to define it this way:
6196555-060

Formatting begins with the word <#’ and ends with the word ’#>’. A single number is printed
using '#’ and the remainder of the number is printed using ’#s’ (which is always at least one
digit). Let’s go a bit further into that:

: print# s>d <# #s #> type cr ;
256 print#

This simply prints a single number (since only *#8’ is between the *<#’ and the '#>’ and goes to
a new line. There is hardly any difference with ’.’. You can try any (positive) number. Note that
the values that '#>’ leaves on the stack can directly be used by "TYPE’. You can forget about
the ’S>D’ word. Just don’t forget to put it there.

This is a slightly different format:



42 CHAPTER 3. ARRAYS AND STRINGS

: print3# s>d <# # # # #> type cr ;
256 print3#

1 print3#

1000 print3#

This one will print "256", "001" and "000". Always the last three positions. The ’#’ simply
stands for ’print a single digit’. So if you want to print a number with at least three digits, the
format would be:

#s # #

That is: print the remainder of the number (at least one digit) and then two more. Now reverse
it:

# # #s
Enclose it by ’S>D’, '<#’ and '#>’ and add "TYPE CR’:
s>d <# # # #s #> type cr

And that’s it! Is it? Not quite. So far we’ve only printed positive numbers. If you try a negative
number, you will find it prints garbage. This behavior can be fixed with the word *SIGN’.

SIGN’ simply takes the number from the stack and prints a "-" when it is negative. The problem
is that all other formatting words can only handle positive numbers. So we need the same number
twice. One with the sign and one without. A typical signed number formatting word looks like:

: signed# dup >r abs s>d <# #s r> sign #> type ;

Note the 'DUP ABS’ sequence. First the number is duplicated (for ’SIGN’) and then the absolute
value is taken (for the other formatting words). So we got the on the stack twice. First on the
returnstack with sign (for ’SIGN’), second without sign (for the other formatting words). Does
that make sense to you?

We can place SIGN’ wherever we want. If we want to place the sign after the number (like some
accountants do) we would write:

: account# dup >r abs s>d <# r> sign #s #> type ;

But that is still not enough to write "$2000.15" is it? Well, in order to do that there is another
very handy word called 'THOLD’. The word '"HOLD’ just copies any character into the formatted
number. Let’s give it a try:

$2000.16
Let’s reverse that:
61.0002%$

So we first want to print two numbers, even when they are zero:



3.31. CONVERTING A NUMBER TO A STRING 43

# # .0002¢$
Then we want to print a dot. This is where "HOLD’ comes in. 'THOLD’ takes an ASCII code and
places the equivalent character in the formatting string. We don’t have to look up the ASCII code
for a dot of course. We can use 'CHAR
# # char . hold 0002%
Then we want to print the rest of the number (which is at least one digit):
# # char . hold #s §$
Finally we want to print the character "$". Another job for "HOLD’:
# # char . hold #s char $ hold
So this is our formatting word:
: currency <# # # [char] . hold #s [char] $ hold #> type cr ;
And we call it like this:

200016 currency

You can do some pretty complex stuff with these formatting words. Try to figure out this one
from the master himself, Leo Brodie:

: sextal 6 base ! ;

:00 # sextal # decimal 58 hold ;
: time# s>d <# :00 :00 #S #> type cr ;
3615 time#

Yeah, it prints the time! Pretty neat, huh? Now try the telephone-number we discussed in the
beginning. That shouldn’t be too hard.

3.31 Converting a number to a string

Since there is no special word in Forth which will convert a number to a string, we’ll have to create
it ourselves. In the previous section we have seen how a numeric string is created in the PAD. We
can use this to create a word that converts a number to a string.

Because the PAD is highly volatile, we have to move the string immediately after its creation. So
we’ll create a word that not only creates the string, but moves it directly to its proper location:

: >string >r dup >r abs s>d <# #s r> sign #>
rQ@ char+ swap dup >r cmove r> r> c! ;
(na--)

It takes a number, the address of a string and returns nothing. Example:
create num$ 16 chars allot

-1024 num$ >string
num$ count type cr



44

CHAPTER 3. ARRAYS AND STRINGS



Chapter 4

Stacks and colon definitions

4.1 The address of a colon-definition

You can get the address of a colon definition by using the word ” (tick):

: add + ; \ a colon definition
’ add . cr \ display address

Very nice, but what good is it for? Well, first of all the construction "> ADD" throws the address
of "ADD" on the stack. You can assign it to a variable, define a constant for it, or compile it into
an array of constants:

’ add constant add-address

variable addr
’ add addr !

create addresses ’ add ,

Are you with us so far? If we would simply write "ADD", "ADD" would be executed right away
and no value would be left on the stack. Tick forces Forth to throw the address of "TADD" on the
stack instead of executing "ADD". What you can actually do with it, we will show you in the
next section.

4.2 Vectored execution

This is a thing that can be terribly difficult in other languages, but is extremely easy in Forth.
Maybe you’ve ever seen a BASIC program like this:

10 LET A=40

20 GOSUB A

30 END

40 PRINT "Hello"
50 RETURN

60 PRINT "Goodbye"
70 RETURN

45



46 CHAPTER 4. STACKS AND COLON DEFINITIONS

If you execute this program, it will print "Hello". If you change variable "A" to "60", it will print
"Goodbye". In fact, the mere expression "GOSUB A" can do two different things. In Forth you
can do this much more comfortable:

: goodbye ." Goodbye" cr ;
: hello ." Hello" cr ;

variable a
: greet a @ execute ;

’ hello a !
greet

’ goodbye a !
greet

What are we doing here? First, we define a few colon-definitions, called "HELLO" and "GOOD-
BYE". Second, we define a variable called "A". Third, we define another colon-definition which
fetches the value of "A" and executes it by calling '"EXECUTE’. Then, we get the address of
"HELLO" (by using " HELLO") and assign it to "A" (by using "A !"). Finally, we execute
"GREET" and it says "Hello".

It seems as if "GREET" is simply an alias for "HELLO", but if it were it would print "Hello"
throughout the program. However, the second time we execute "GREET", it prints "Goodbye".
That is because we assigned the address of "GOODBYE" to "A".

The trick behind this all is 'EXECUTE’. ’JEXECUTE’ takes the address of e.g. "HELLO" from
the stack and calls it. In fact, the expression:

hello

Is equivalent to:
’ hello execute

This can be extremely useful. We’ll give you a little hint:
create subs ’ hello , ’ goodbye ,

Does this give you any ideas?

4.3 Using values

A value is a cross-over between a variable and a constant. May be this example will give you an
idea:

declaration:
variable a ( No initial value)

1 constant b ( Initial value, can’t change)
2 b + value ¢ ( Initial value, can change)



4.4. THE STACKS 47

fetching:
a@ ( Variable throws address on stack)
b ( Constant throws value on stack)
c ( Value throws value on stack)
storing;:
2b+at ( Expression can be stored at runtime)
( Constant cannot be reassigned)
2b+ toc ( Expression can be stored at runtime)

In many aspects, values behave like variables and can replace variables. The only thing you cannot
do is make arrays of values.

In fact, a value is a variable that behaves in certain aspects like a constant. Why use a value at
all? Well, there are situations where a value can help, e.g. when a constant CAN change during
execution. It is certainly not a good idea to replace all variables by values.

4.4 The stacks

Forth has two stacks. So far we’ve talked about one stack, which is the Data Stack. The Data
Stack is heavily used, e.g. when you execute this code:

23 +.

Only the Data Stack is used. First, "2" is thrown on it. Second, "3" is thrown on it. Third, '+’
takes both values from the stack and returns the sum. Fourth, this value is taken from the stack
by ’.” and displayed. So where do we need the other stack for?

Well, we need it when we want to call a colon-definition. Before execution continues at the colon-
definition, it saves the address of the currently executed definition on the other stack, which is
called the Return Stack for obvious reasons.

Then execution continues at the colon-definition. Every colon-defini tion is terminated by ’;’,
which compiles into '"EXIT’. When "EXIT’ is encountered, the address on top of the Return Stack
is popped. Execution then continues at that address, which in fact is the place where we came
from.

If we would store that address on the Data Stack, things would go wrong, because we can never
be sure how many values were on that stack when we called the colon-definition, nor would be
know how many there are on that stack when we encounter '"EXIT’. A separate stack takes care
of that.

Try and figure out how this algorithm works when we call a colon-definition from a colon-definition
and you will see that it works (Forth is proof of that).

It now becomes clear how 'EXECUTE’ works. When "EXECUTE’ is called, the address of the
colon-definition is on the Data Stack. All 'EXECUTE’ does is copy its address on the Return
Stack, take the address from the Data Stack and call it. ’EXIT’ never knows the difference..

But the Return Stack is used by other words too. Like DO’ and 'LOOP’. 'DO’ takes the limit
and the counter from the Data Stack and puts them on the Return Stack. 'LOOP’ takes both of
them from the Return Stack and compares them. If they don’t match, it continues execution after
'DO’. That is one of the reasons that you cannot split a 'DO..’"LOOP’.



48 CHAPTER 4. STACKS AND COLON DEFINITIONS

However, if you call a colon-definition from within a 'DO’.”’LOOP’ you will see it works: the return
address is put on top of the limit and the counter. As long as you keep the Return Stack balanced
(which isn’t too hard) you can get away with quite a few things as we will see in the following
section.

4.5 Saving temporary values

We haven’t shown you how the Return Stack works just for the fun of it. Although it is an area
that is almost exclusively used by the system you can use it too.

We know we can manipulate the Data Stack only three items deep (using 'ROT’). Most of the
time that is more than enough, but sometimes it isn’t.

In Forth there are special words to manipulate stack items in pairs, e.g. "2DUP" ( nl n2 — nl n2
nl n2) or "2DROP" ( nl n2 -). In most Forths they are already available, but we could easily
define those two ourselves:

: 2dup over over ;
: 2drop drop drop ;

You will notice that "2SWAP" ( nl1 n2 n3 n4 — n3 n4 nl n2) becomes a lot harder. How can we
get this deep? You can use the Return Stack for that..

The word >R’ takes an item from the Data Stack and puts it on the Return Stack. The word
'R>" does it the other way around. It takes the topmost item from the Return Stack and puts it
on the Data Stack. Let’s try it out:

( n1 n2 n3 n4) \ four items on the stack
( n1 n3 n4 n2) \ rotate the topmost three
>r ( n1 n3 n4) \ n2 is now on the Return Stack
( n3 n4 ni1) \ rotate other items
( n3 n4 n1 n2) \ get n2 from the Return Stack

And why does it work in this colon-definition? Why doesn’t the program go haywire? Because
the Return Stack is and was perfectly balanced. The only thing we had to do was to get off
"n2" before the semi-colon was encountered. Remember, the semi-colon compiles into ’EXIT’ and
"EXIT’ pops a return-address from the Return Stack. Okay, let me show you the Return Stack
effects:

: 2swap (r1)
rot ( rl)
>r ( r1 n2)
rot ( rl n2)
> (r1)

; -2

Note, these are the Return Stack effects! "R1" is the return-address. And it is there on top on
the Return Stack when 'EXIT’ is encountered. The general rule is:

Clean up your mess inside a colon-definition



4.6. THE RETURN STACK AND THE DO..LOOP 49

If you save two values on the Return Stack, get them off there before you attempt to leave. If
you save three, get three off. And so on. This means you have to be very careful with looping
and branching. Otherwise you have a program that works perfectly in one situation and not in
another:

: this-wont-work ( n1 n2 -- n1 n2)
>r ( n1)
0= if (¢ --)
> ( n2)
dup ( n2 n2)
else
12 (12
then

This program will work perfectly if nl equals zero. Why? Let’s look at the Return Stack effects:

: this-wont-work (rl)
>r ( r1 n2)
0= if ( r1 n2)
r> (r1)
dup (r1)
else ( r1 n2)
12 ( r1n2)
then

You see when it enters the "ELSE’ clause the Return Stack is never cleaned up, so Forth attempts
to return to the wrong address. Avoid this, since this can be very hard bugs to fix.

4.6 The Return Stack and the DO..LOOP

We’ve already told you that the limit and the counter of a DO..LOOP (or DO..+LOQP) are stored
on the Return Stack. But how does this affect saving values in the middle of a loop? Well, this
example will make that quite clear:

: test
1 (n)
10 0 do (n
>r ¢ --)
i. (-2
r> ( n)
loop (n)
cr (n)
drop ¢ --)
test

You might expect that it will show you the value of the counter ten times. In fact, it doesn’t.
Let’s take a look at the Return Stack:



50 CHAPTER 4. STACKS AND COLON DEFINITIONS

: test
1 ¢ --)
10 0 do (10
>r (1cn)
i (1lcmn)
> (10
loop ( --)
cr ¢ --)
drop ( --)
test

You might have noticed (unless you’re blind) that it prints ten times the number "1". Where does
it come from? Usually T’ prints the value of the counter, which is on top of the Return Stack.

This time it isn’t: the number "1" is there. So ’T’ thinks that "1" is actually the counter and
displays it. Since that value is removed from the Return Stack when 'LOOP’ is encountered, it
doesn’t do much harm.

We see that we can safely store temporary values on the Return Stack inside a DO..LOOP, but
we have to clean up the mess, before we encounter 'TLOOP’. So, this rule applies here too:

Clean up your mess inside a DO..LOOP

But we still have to be prepared that the word '’ will not provide the expected result (which is
the current value of the counter). In fact, I’ does simply copy the topmost value on the Return
Stack. Which is usually correct, unless you’ve manipulated the Return Stack yourself.

Note that there are other words beside T’, which do exactly the same thing: copy the top of the
Return Stack. But they are intended to be used outside a DO..LOOP. We’ll see an example of
that in the following section.

4.7 Other Return Stack manipulations

The Return Stack can avoid some complex stack acrobatics. Stack acrobatics? Well, you know it
by now. Sometimes all these values and addresses are just not in proper sequence, so you have to
’SWAP’ and 'ROT’ a lot until they are.

You can avoid some of these constructions by just moving a single value on the Return Stack. You
can return it to the Data Stack when the time is there. Or you can use the top of the Return
Stack as a kind of local variable.

No, you don’t have to move it around between both stacks all the time and you don’t have to use
T’ out of its context. There is a well-established word, which does the same thing: "R@’. This is
an example of the use of 'RQ’:

: delete (n--)

>r #lag + ( al)

r@ - #lag ( al a2 n2)

r@ negate ( al a2 n2 n3)
r# +! ( al a2 n2)
#lead + ( al a2 n2 a3)
swap cmove ( al)

r> blanks -



4.8. ALTERING THE FLOW WITH THE RETURN STACK 51

'R@’ copies the top of the Return Stack to the Data Stack. This example is taken from a Forth-
editor. It deletes "n" characters left of the cursor. By putting the number of characters on the
Return Stack right away, its value can be fetched by 'R@’ without using 'DUP’ or ’OVER’. Since
it can be fetched at any time, no 'SWAP’ or 'ROT’ has to come in.

4.8 Altering the flow with the Return Stack

The mere fact that return addresses are kept on the stack means that you can alter the flow of a
program. This is hardly ever necessary, but if you’re a real hacker you’ll try this anyway, so we’d
better give you some pointers on how it is done. Let’s take a look at this program. Note that we
comment on the Return Stack effects:

: soup ." soup " ; (rlr2)

: dessert ." dessert " ; ( r1 r6)

: chicken ." chicken " ; ( r1 r3 r4)
: rice ." rice " ; ( r1 r3 rb)
: entree chicken rice ; ( r1 r3)

: dinner soup entree dessert ; (rl)
dinner cr ¢ --)

And this is the output:
soup chicken rice dessert

Before we execute "DINNER" the Return Stack is empty. When we enter "DINNER" the return
address to the main program is on the Return Stack (rl).

"DINNER" calls "SOUP". When we enter "SOUP" the return address to "DINNER" is on the
Return Stack (r2). When we are done with "SOUP", its return address disappears from the
Return Stack and execution continues within "DINNER".

Then "ENTREE" is called, putting another return address on the Return Stack (r3). "ENTREE"
on its turn, calls "CHICKEN". Another return address (r4) is put on the Return Stack. Let’s
take a look on what currently lies on the Return Stack:

- Top Of Return Stack (TORS) -

r4 - returns to ENTREE
r3 - returns to DINNER
rl - returns to main program

As we already know, ’;” compiles an ’EXIT’, which takes the TORS and jumps to that address.
What if we lose the current TORS? Will the system crash?

Apart from other stack effects (e.g. too few or the wrong data are left on the Data Stack) nothing
will go wrong. Unless the colon-definition was called from inside a DO..LOOP, of course. But
what DOES happen? The solution is provided by the table: it will jump back to "DINNER" and
continue execution from there.

: soup ." soup " ; (rlr2)

: dessert ." dessert " ; ( r1 r6)

: chicken ." chicken " r> drop ; ( r1 r3 - r4 gets lost!)
: rice ." rice " ; ( r1 r3 rb)

: entree chicken rice ; ( r1 r3)

: dinner soup entree dessert ; (r1)
dinner cr ¢ -2



52 CHAPTER 4. STACKS AND COLON DEFINITIONS

Since "CHICKEN" gets rid of the return address to "ENTREE", "RICE" is never called. In-
stead, a jump is made to "DINNER" that assumes that "ENTREE" is done, so it continues with
"DESSERT". This is the output:

soup chicken dessert

Note that this is not common practice and we do not encourage its use. However, it gives you a
pretty good idea how the Return Stack is used by the system.

4.9 Leaving a colon-definition

You can sometimes achieve the very same effect by using the word ’EXIT’ on a strategic place.
We've already encountered ’EXIT’. It is the actual word that is compiled by ’;’.

What you didn’t know is that you can compile an 'EXIT’ without using a ’;’. And it does the
very same thing: it pops the return address from the Return Stack and jumps to it. Let’s take a
look at our slightly modified previous example:

: soup ." soup " ; (rlr2)

: dessert ." dessert " ; ( r1 r6)

: chicken ." chicken " ; ( rl r3 r4)

: rice ." rice " ; ( is never reached)
: entree chicken exit rice ; ( r1 r3)

: dinner soup entree dessert ; (r1)

dinner cr ¢ --)

After "CHICKEN" has been executed by "ENTREE", an 'EXIT’ is encountered. 'EXIT’ works
just like ’;’; so Forth thinks the colon-definition has come to an end and jumps back to "DINNER".
It never comes to calling "RICE", so the output is:

soup chicken dessert

"EXTIT’ is mostly used in combination with some kind of branching like IF..ELSE.. THEN. Compare
it with 'TLEAVE’ that leaves a DO..LOOP early.

But now for the big question: what is the difference between "EXIT’ and ’;’? Both compile an
"EXTIT’, but they are not aliases. Forth shuts down the compiler when encountering ’;’. This is
not performed by "EXIT".

4.10 How deep is your stack?

You can ask Forth how many values are on the Data Stack using 'DEPTH’. It will report the
number of values, before you executed 'DEPTH’. Let’s elaborate on that a little more:

. ( Begin) cr ( no values on the stack)
10 ( 1 value on the stack)

5 ( 2 values on the stack)
9 ( 3 values on the stack)
depth ( 4 values on the stack)

. cr ( Forth reports "3")



Chapter 5

Advanced topics

5.1 Booleans and numbers

You might have expected we had discussed this subject much earlier. But we haven’t and for one
very good reason. We’ve told you a few chapters ago that 'IF’ branches if the top of the stack is
non-zero. Any number will do. So you would expect that this program will print "I’'m here":

: test
1 2 and
if
." I’m here"
then
3
test

In fact, it doesn’t! Why? Well, ’AND’ is a BINARY operator, not a LOGICAL operator. That
means it reacts on bit-patterns. Given two numbers, it will evaluate bits at the same position.

The number "1" is "01" in binary. The number "2" is "10" in binary. ’AND’ will evaluate the
first bit (binary digit, now you know where that came from!). The first bit is the rightmost bit,
so "Q" for the number "2" and "1" for the number "1".

’AND’ works on a simple rule, if both bits are "1" the result will be "1" on that position. Otherwise
it will be "0". So "1" and "0" are "0". The evaluation of the second bit has the same result: "0".
We're stuck with a number that is "0". False. So ’TF’ concludes that the expression is not true:

2 base ! \ set radix to binary

10 ( binary number "2")

01 AND ( binary number "1")

= . cr ( binary result after AND)

It will print "0". However, "3" and "2" would work just fine:

2 base ! \ set radix to binary

10 ( binary number "2")

11 AND ( binary number "3")

. cr ( binary result after AND)

53



54 CHAPTER 5. ADVANCED TOPICS

It will print "10". The same applies to other binary operators as ’'OR’ and INVERT". ’OR’ works
just like ’AND’ but works the other way around. If both bits are "0" the result will be "0" on
that position. Otherwise it will be "1":

2 base ! \ set radix to binary

10 ( binary number "2")

01 OR ( binary number "1")

. cr ( binary result after OR)

It will print "11". We do not encourage the use of INVERT’ for logical operations, although
the standard allows it. You should use 0=’ instead. 0=’ takes the top of the stack and leave a
true-flag if it is zero. Otherwise it will leave a false-flag. That means that if a condition istrue
(non-zero), it will leave a false-flag. Which is exactly what a logical NOT should do.

Take a look at his brother ’'0<>’. ’0<>’ takes the top of the stack and leaves a true-flag if it is
non-zero. Otherwise it will leave a false- flag. The funny thing is ’AND’ and ’OR’ work perfectly
with flags and behave as expected. '0<>’ will convert a value to a flag for you. So this works:

: test
1 0<>
2 0<>
and if
." I’m here" cr
then
’
test

Of course, you don’t have to use ’0<>’ when a word returns a flag. You should check the standard
for details on that.

5.2 Including your own definitions

At a certain point you may have written a lot of definitions you’re very fond of. You use them
in most of your programs, so before you actually get to the programs you have to work your way
through all these standard definitions. Even worse, when you change one of them you have to
edit all your programs. Most Forths have a way to permanently include them in the kernel, but if
you’re not up to that or want your programs to be as portable as possible you can solve this in a
better way.

Just put all of your definitions in a single file and start your program with:
s" mydefs.fs" included

The compiler will now first compile all the definitions in "mydefs.fs” before starting with the main
program. We’ve done exactly the same in the following sections. Most of the code you’ll find
there uses the Easy4tH extensions, so instead of listing them every single time, we’ve just included
them. Easy4tH has old favorites like "PLACE” and "NUMBER” already available to you.

You have to define the constant ”/STRING-SPACE” first in order to use it. A value of 16384
should be fine in most cases. If you get an error, you can always increase it.



5.3. CONDITIONAL COMPILATION 55
5.3 Conditional compilation

This is something which can be very handy when you’re designing a Forth program for different
environments or even different Forth compilers. Let’s say you’ve written a general ledger program
in Forth that is so good, you can sell it. Your customers want a demo, of course. You’re willing
to give one to them, but you're afraid they’re going to use the demo without ever paying for it.

One thing you can do is limit the number of entries they can make. So, you copy the source and
make a special demo version. But you have to do that for every new release. Wouldn’t it just
be easier to have one version of the program and just change one single constant? You can with
conditional compilation:

true constant DEMO

DEMO [if]

256 constant #Entries
[else]

65536 constant #Entries
[then]

variable CurrentEntry

create Entries #Entries cells allot

We defined a constant, called "DEMQO", which is true. So, when the compiler reaches the "DEMO
[if]" line, it knows that it has to compile "256 constant Entries", since "DEMO" is true. When it
comes to "[else]", it knows it has to skip everything up to "[then]". So, in this case the compiler
behaves like you’ve written:

256 constant #Entries
variable CurrentEntry
create Entries #Entries cells allot

Would you change "DEMO" to false, the compiler would behave as if you wrote:

variable CurrentEntry
65536 constant #Entries
create Entries #Entries cells allot

The word ’[IF]” only works at compile time and is never compiled into the object. ’[IF]’ takes a
expression. If this expression is true, the code from ’[IF]” until [ELSE]’ is compiled, just as ’[IF]’
wasn’t there. Is this expression is false, everything ’[IF]” up to ’'[ELSE]’ is discarded as if it wasn’t
there.

That also means you can discard any code that is superfluous in the program. E.g. when you're
making a colon-definition to check whether you can make any more entries. If you didn’t use
conditional compilation, you might have written it like this:

: CheckIfFull (n--n)
dup #Entries = (nf)
if ( n)
drop ¢ --)

DEMO ( £)



56 CHAPTER 5. ADVANCED TOPICS

if ()
." Buy the full version"
else \ give message and exit program
." No more entries"
then ¢ --)
cr quit
then ( n)

But this one is nicer and will take up less code:

DEMO [IF]
.Message ." Buy the full version" ;
[ELSE]
.Message ." No more entries" ;
[THEN]
: CheckIfFull (n--n)
dup #Entries = (n 1)
if ( n)
drop -9
.Message
cr quit
then (n)

You can also use conditional compilation to discard large chunks of code. This is a much better
way than to comment all the lines out, e.g. this won’t work anyway:

(
: room? \ is it a valid variable?
dup (nmn
size 1- invert and (nf)
if \ exit program
drop ." Not an element of ROOM" cr quit
then
5
)

This is pretty cumbersome and prone to error:

\ : room? \ is it a valid variable?
\ dup ( nn)

\ size 1- invert and (n 1)

\ if \ exit program

\ drop ." Not an element of ROOM" cr quit

\ then

\ ;

But this is something that can easily be handled:



5.4. EXCEPTIONS a7

false [if]
: room? \ is it a valid variable?
dup (nmn)
size 1- invert and (nf)
if \ exit program
drop ." Not an element of ROOM" cr quit
then
5
[then]

Just change "false" to "true" and the colon-definition is part of the program again. Note that
'[IF] .. [THEN]’ can be nested! Conditional compilation is very powerful and one of the easiest
features a language can have.

5.4 Exceptions

You know when you violate the integrity of Forth, it will exit and report the cause and location of
the error. Wouldn’t it be nice if you could catch these errors within the program? It would save
a lot of error-checking anyway. It is quite possible to check every value within Forth, but it takes
code and performance, which makes your program less compact and slower.

Well, you can do that too in Forth. And not even that, you can trigger your own errors as well.
This simple program triggers an error and exits Forth when you enter a "0":

16384 constant /string-space
s" easy4th.fs" included

input# \ get a number
begin
refill drop ¢ --)
bl word number (n)
dup (error) <> (nf)
dup 0= (nf -f)
if swap drop then (f | nf)
until ( input routine )
\ get a number
\ if non-zero, return it
\ if zero, throw exception
could-fail (--n
input# dup O=
if 1 throw then
\ drop numbers and
\ call COULD-FAIL
: do-it ¢ --)
drop drop could-fail
\ put 2 nums on stack and
\ execute DO-IT
: try-it -9

1 2 [’] do-it execute



58 CHAPTER 5. ADVANCED TOPICS

." The number was" . cr
\ call TRY-IT
try-it

"TRY-IT" puts two numbers on the stack, gets the execution token of "DO-IT" and executes it.
"DO-IT" drops both numbers and calls "COULD-FAIL". "COULD-FAIL" gets a number and
compares it against "0". If zero, it calls an exception. If not, it returns the number.

The expression "1 THROW" has the same effect as calling ’QUIT’. The program exits, but with
the error message "Unhandled exception". You can use any positive number for " THROW’, but "0
THROW?" has no effect. This is called a "user exception", which means you defined and triggered
the error.

There are also system exceptions. These are triggered by the system, e.g. when you want to
access an undefined variable or print a number when the stack is empty. These exceptions have a
negative number, so:

throw -4

Will trigger the "Stack empty" error. You can use these if you want but we don’t recommend it,
since it will confuse the users of your program.

You're probably not interested in an alternative for "QUIT’. Well, " THROW?” isn’t. It just enables
you to "throw" an exception and exceptions can be caught by your program. That means that
Forth won'’t exit, but transfers control back to some routine. Let’s do just that:

16384 constant /string-space
s" easy4th.fs" included

: input#
begin
refill drop ¢ --)
bl word number (n)
dup (error) <> (nf)
dup 0= (nf -f)
if swap drop then (f|lntf)
until ( input routine )
: could-fail ( -- n)
input# dup O=
if 1 throw then
: do-it ( --)
drop drop could-fail
1 try-it ( --)
1 2 [’] do-it catch
if drop drop ." There was an exception" cr
else ." The number was" . cr

then



5.4. EXCEPTIONS 99

H
try-it

The only things we changed is a somewhat more elaborate "TRY-IT" definition and we replaced
"EXECUTE’ by '"CATCH’.

"CATCH’ works just like '"EXECUTE’, except it returns a result-code. If the result-code is zero,
everything is okay. If it isn’t, it returns the value of "THROW?’. In this case it would be "1", since
we execute "1 THROW". That is why "0 THROW" doesn’t have any effect.

If you enter a nonzero value at the prompt, you won'’t see any difference with the previous version.
However, if we enter "0", we’ll get the message "There was an exception", before the program
exits.

But hey, if we got that message, that means Forth was still in control! In fact, it was. When
"1 THROW" was executed, the stack-pointers were restored and we were directly returned to
"TRY-IT". As if "1 THROW" performed an "EXIT’ to the token following ’"CATCH’.

Since the stack-pointers were returned to their original state, the two values we discarded in "DO-
IT" are still on the stack. But the possibility exists they have been altered by previous definitions.
The best thing we can do is discard them.

So, the first version exited when you didn’t enter a nonzero value. The second version did too,
but not after giving us a message. Can’t we make a version in which we can have another try?
Yes we can:

16384 constant /string-space
s" easy4th.fs" included

: input#
begin
refill drop ¢ --)
bl word number (n)
dup (error) <> (nf)
dup 0= (nf -f)
if swap drop then (f |l ntf)
until ( input routine )
: could-fail ( --n)
input# dup 0=
if 1 throw then
: do-it ¢ --
drop drop could-fail
: retry-it ¢ --)
begin
1 2 [’] do-it catch
while
drop drop ." Exception, keep trying" cr
repeat

." The number was " . cr



60 CHAPTER 5. ADVANCED TOPICS

H
retry-it

This version will not only catch the error, but it allows us to have another go! We can keep on
entering "0", until we enter a nonzero value. Isn’t that great? But it gets even better! We can
exhaust the stack, trigger a system exception and still keep on going. But let’s take it one step at
the time. First we change "COULD-FAIL" into:

: could-fail ( --n
input# dup 0=
if drop ." Stack: " depth . cr 1 throw then

This will tell us that the stack is exhausted at his point. Let’s exhaust is a little further by
redefining "COULD-FAIL" again:

: could-fail ( -- n)
input# dup 0=
if drop drop then

Another 'DROP’? But wouldn’t that trigger an "Stack empty" error? Yeah, it does. But instead
of exiting, the program will react as if we wrote "-4 THROW" instead of "DROP DROP". The
program will correctly report an exception when we enter "0" and act accordingly.

This will work with virtually every runtime error. Which means we won’t have to protect our
program against every possible user-error, but let Forth do the checking.

We won’t even have to set flags in every possible colon-definition, since Forth will automatically
skip every level between "THROW’ and 'CATCH’. Even better, the stacks will be restored to the
same depth as they were before "CATCH’ was called.

You can handle the error in any way you want. You can display an error message, call some kind
of error-handler, or just ignore the error. Is that enough flexibility for you?

5.5 Lookup tables

Leo Brodie wrote: "I consider the case statement an elegant solution to a misguided problem:
attempting an algorithmic expression of what is more aptly described in a decision table". And
that is exactly what we are going to teach you.

Let’s say we want a routine that takes a number and then prints the appropriate month. In
ANS-Forth, you could do that this way:

: Get-Month
case

of ." January " endof
of ." February " endof
of ." March " endof
of ." April " endof
of ." May " endof
of ." June " endof

DU WN -



5.5. LOOKUP TABLES

7 of ." July " endof

8 of ." August " endof

9 of ." September" endof

10 of ." October " endof

11 of ." November " endof

12 of ." December " endof
endcase

Ccr

61

This takes a lot of code and a lot of comparing. In this case (little wordplay) you would be better

of with an indexed table,

16384 const

like this:

ant /string-space

s" easy4th.fs" included
create MonthTable
$" January " ,
$" February " ,
$" March " ,
$"  April ",
$|| May " ,
$" June "
$|| Jllly n s
$" August " ,
$" September" ,
$" October " ,
$" November " ,
$" December " ,
: Get-Month (n--)

12 min 1- MonthTable swap cells + @ pad copy' count type cr

Which does the very same thing and will certainly work faster. Normally, you can’t do that this
easily in ANS-Forth, but with this primer you can, so use it! But can you use the same method
when you’re working with a random set of values like "2, 1, 3,12, 5, 6, 4, 7, 11, 8, 10, 9". Yes, you
can. But you need a special routine to access such a table. Of course we designed one for you:

: Search-Table

swap
rot r
over

0

begin

( n1 al n2
>r ( n1 al n3)
ot ( n3 n1 al)
over ( n3 n1 al

( n3 n1 al

( n3 n1 ail
swap over ( n3 n1 al
cells + ( n3 n1 al
@ dup ( n3 n1 al
0> >r ( n3 n1 al

n3

nil
nil

nil
nil
nl
nl
nil

-- n4 f)

al)
al n2)
al
n2
n2
n2
n2

n2)
al n2)
a2)
n3 n3)
n3)

I"COPY?” is part of the Easy4tH extensions and will copy a counted string from one address to another (addrl

addr2 — addr2).



62

rot <>

r@ and
while

r> drop

r@ +

>r over over

r>
repeat

rQ if
>r rot r>
+ cells + @
swap drop
else
drop drop drop
then

r>
r> drop

n3
n3
n3
n3
n3
n3
n3
n3

AN AN AN AN A

( n1

( n1 n4)

( n3)

( n1)

nil
nil
nil
nil
nl
nl
nil
nil

al

(nf)
(nf)

al
al
al
al
al
al
al
al

n3

CHAPTER 5. ADVANCED TOPICS

n2 f)

n2 f)

n2)

n2)

n2+2)

nl al)

nl al n2+2)
n2)

n2)

This routine takes four values. The first one is the value you want to search. The second is the
address of the table you want to search. The third one is the number of fields this table has. And
on top of the stack you’ll find the field which value it has to return. The first field must be the
"index" field. It contains the values which have to be compared. That field has number zero.

This routine can search zero-terminated tables. That means the last value in the index field must
be zero. Finally, it can only lookup positive values. You can change all that by modifying the
line with "0> >r". It returns the value in the appropriate field and a flag. If the flag is false, the

value was not found.

Now, how do we apply this to our month table? First, we have to redefine it:

16384 constant /string-space

s" easy4th.fs" included
0 Constant NULL

create MonthTable

1, $" January " ,
2 , $" February " ,
3, %" March " ,
4, $" April ",
5 , $|| May n ,
6 , %" June ",
7, $" July "o
8 , $" August " ,
9 , $" September" ,

10 , $" October "

11 , $" November " ,
12 , $" December " ,

NULL ,

Note that this table is sorted, but that doesn’t matter. It would work just as well when it was
unsorted. Let’s get our stuff together: the address of the table is "MonthTable", it has two fields



5.5. LOOKUP TABLES 63

and we want to return the address of the string, which is located in field 1. Field 0 contains the
values we want to compare. We can now define a routine which searches our table:

: Search-Month MonthTable 2 1 Search-Table ; (nl -- n2 £)

Now, we define a new "Get-Month" routine:

: Get-Month (n--)

Search-Month \ search table

if \ if month is found
pad copy count type \ print its name

else \ if month is not found
drop ." Not found" \ drop value

then \ and show message

cr

Is this flexible? Oh, you bet! We can extend the table with ease:

16384 constant /string-space
s" easy4th.fs" included

0 Constant NULL
3 Constant #MonthFields

create MonthTable

, $" January " , 31,
, $" February " , 28 ,
, $" March " , 31 ,
, $"  April ", 30 ,

$|| May n s 31 ,
, $" June " 30,
, $"  July ", 31,

, $" August " , 31 ,
, $" September" , 30 ,

O 00N WN -

10 , $" October " , 31 ,
11 , $" November " , 30 ,
12 , $" December " , 31 ,
NULL ,

Now we make a slight modification to "Search-Month":

: Search-Month MonthTable #MonthFields 1 Search-Table ;
This enables us to add more fields without ever having to modify "Search-Month" again. If we
add another field, we just have to modify "#MonthFields". We can now even add another routine,
which enables us to retrieve the number of days in a month:

: Search-#Days MonthTable #Monthfields 2 Search-Table ;

Of course, there is room for even more optimization, but for now we leave it at that. Do you now
understand why Forth shouldn’t have a CASE construct?



64 CHAPTER 5. ADVANCED TOPICS
5.6 Fixed point calculation

We already learned that if we can’t calculate it out in dollars, we can calculate it in cents. And
still present the result in dollars using pictured numeric output:

: currency <# # # [char] . hold #s [char] $ hold #> type cr ;
In this case, this:

200012 currency
will print this:

$2000.12

Well, that may be a relief for the bookkeepers, but what about us scientists? You can do the very
same trick. We have converted some Forth code for you that gives you very accurate results. You
can use routines like SIN, COS and SQRT. A small example:

31415 CONSTANT PI
10000 CONSTANT 10K ( scaling constant )
VARIABLE XS ( square of scaled angle )

: KN ( nl n2 -- n3, n3=10000-n1*x*x/n2 where x is the angle )

XS @ SWAP / ( x*x/n2 )
NEGATE 10K */ ( -nl1*x*x/n2 )
10K + ( 10000-n1*x*x/n2 )
(SIN) ( x -- sine*10K, x in radianx10K )

DUP DUP 10K */ ( x*x scaled by 10K )
XS ! ( save it in XS )
10K 72 KN ( last term )
42 KN 20 KN 6 KN ( terms 3, 2, and 1 )
10K */ ( times x )

: SIN ( degree -- sinex10K )
PI 180 x/ ( convert to radian )
(SIN) ( compute sine )

If you enter:
45 sin . cr

You will get "7071", because the result is multiplied by 10000. You can correct this the same way
you did with the dollars: just print the number in the right format.

: /10K. <# # # # # [char] . hold #S #> type cr ;
45 sin /10K.



5.7. RECURSION 65
This one will actually print:
0.7071

But note that Forth internally still works with the scaled number, which is "7071". Another
example:

: SQRT ( nl -- n2, n2*%*2<=nl )
0 ( initial root )
SWAP 0 ( set nl as the limit )
DO 1 + DUP ( refresh root )
2% 1 + ( 2n+1 )
+L00OP ( add 2n+1 to sum, loop if )
; ( less than nl, else done )

.fp <# # [char] . hold #S #> type cr ;

If you enter a number of which the root is an integer, you will get a correct answer. You don’t
even need a special formatting routine. If you enter any other number, it will return only the
integer part. You can fix this by scaling the number.

However, scaling it by 10 will get you nowhere, since "3" is the square root of "9", but "30" is
not the square root of "90". In that case, we have to scale it by 100, 10,000 or even 1,000,000 to
get a correct answer. In order to retrieve the next digit of the square root of "650", we have to
multiply it by 100:

650 100 * sqrt .fp
Which will print:
25.4

To acquire greater precision we have to scale it up even further, like 10,000. This will show us,
that "25.49" brings us even closer to the correct answer.

5.7 Recursion

Yes, but can she do recursion? Of course she can! In order to let a colon-definition call itself, you
have to use the word 'RECURSE’. Everybody knows how to calculate a factorial. In Forth you
can do this by:

: factorial ( n1 -- n2)
dup 2 >
if
dup 1-
recurse *
then

3

10 factorial . cr



66 CHAPTER 5. ADVANCED TOPICS

If you use the word 'RECURSE’ outside a colon-definition, the results are undefined. Note that
recursion lays a heavy burden on the return stack. Sometimes it is wiser to implement such a
routine differently:

: factorial
dup

begin
dup 2 >
while

1- swap over * swap
repeat

drop

10 factorial . cr

So if you ever run into stack errors when you use recursion, keep this in mind.

5.8 Forward declarations

It doesn’t happen very often, but sometimes you have a program where two colon-definitions call
each other. There is no special instruction in Forth to do this, like Pascals "FORWARD" keyword,
but still it can be done. It even works the same way. Let’s say we’ve got two colon-definitions
called "STEP1" and "STEP2". "STEP1" calls "STEP2" and vice versa. First we create a value
called "(STEP2)". We assign it the value -1’ since it is highly unlikely, there will ever be a word
with that address:

-1 value (Step2)

Then we use vectored execution to create a forward declaration for "STEP2":
: Step2 (Step2) execute ;

Now we can create "STEP1" without a problem:
: Stepl 1+ dup . cr Step2 ;

But "STEP2" does not have a body yet. Of course, you could create a new colon-definition, tick
it and assign the execution token to "(STEP2)", but this creates a superfluous word.

It is much neater to use "NONAME’. “NONAME’ can be used like a normal ’:’, but it doesn’t

require a name. Instead, it pushes the execution token of the colon-definition it created on the

stack. No, XNONAME’ does *NOT* create a literal expression, but it is just what we need:
:noname 1+ dup . cr Stepl ; to (Step2)

Now we are ready! We can simply execute the program by calling "STEP1":

1 Stepl

Note that if you run this program, you’ll get stack errors! Sorry, but the example has been taken
from a Turbo Pascal manual ;).



5.9. THIS IS THE END 67
5.9 This is the end

This is the end of it. If you mastered all we have written about Forth, you may be just as proficient
as we are. Or even better. In the meanwhile you may even have acquired a taste for this strange,
but elegant language. If you do, there is plenty left for you to learn.

If you find any errors in this primer or just want to make a remark or suggestion, you can contact
us by sending an email to:

hansoft@bigfoot.com
We do also have a web-site:
http://hansoft.come.to

You will find there lots of documentation and news on 4tH, our own Forth compiler.



68

CHAPTER 5. ADVANCED TOPICS



Part 1

Appendices

69






Bibliography

ANSI X3/X3J14 (1993).

Draft proposed American National Standrad for Information Systems — Program-
ming Languages — Forth. Global Engineering Documents, 15 Inverness Way East,
Englewood, CO 80122-5704, USA, sixth edition, 1993. Document Number: ANSI/IEEE
X3.215-1994.

Leo Brodie (1982).

Starting Forth. Prentice Hall International, second edition, 1982.
Leo Brodie (1984).

Thinking Forth. Prentice Hall International, 1984.

Hans Bezemer / Benjamin Hoyt (1997).

Lookup Tables. Forth Dimensions, Volume XIX, Number 3, September 1997 October.

71



72



History

| VERSION | AUTHOR | DATE | MODIFICATION
0.1 Hans Bezemer | 2001-03-07 | Initial document
0.2 Hans Bezemer | 2001-03-11 | Used ’"COMUS’ APPEND and changed ” to $” in section ’Lookup Tables’
0.3 Hans Bezemer | 2001-03-25 | Changed several things in Easy4tH and fixed some errors in example programs

73




74



Easy4tH

\ easy4th V1.0d A 4tH to ANS Forth interface

~

Typical usage:
4096 constant /string-space
s" easy4th.fs" included

~ -

This is an ANS Forth program requiring:
1. The word NIP in the Core Ext. word set
The word /STRING in the String word set
The word D>S in the Double word set
The words MS and TIME&DATE in the Facility Ext. word set
The words [IF] and [THEN] in the Tools Ext. word set.

P
g b wN

(c) Copyright 1997,2001 Wil Baden, Hans Bezemer. Permission is granted by the
authors to use this software for any application provided this
copyright notice is preserved.

~

Uncomment the next line if REFILL does not function properly

~

: refill query cr true ;

\ 4tH datatypes

: ARRAY CREATE CELLS ALLOT ;
: STRING CREATE CHARS ALLOT ;
: TABLE CREATE ;

\ 4tH constants

S" MAX-N" ENVIRONMENT? \ query environment
[IF] \ if successful

NEGATE 1- CONSTANT (ERROR) \ create constant (ERROR)
[ELSE]

.( Error: MAX-N undefined) cr

[THEN]

S" MAX-N" ENVIRONMENT? \ query environment
[IF] \ if successful
CONSTANT MAX-N \ create constant MAX-N
[ELSE]

.( Error: MAX-N undefined) cr

[THEN]

S" STACK-CELLS" ENVIRONMENT? \ query environment

75



76

[IF] \ if successful
CONSTANT STACK-CELLS \ create constant STACK-CELLS
[ELSE]

.( Error: STACK-CELLS undefined) cr

[THEN]

S" /PAD" ENVIRONMENT? \ query environment
[IF] \ if successful
CONSTANT /PAD \ create constant /PAD
[ELSE]

.( Error: /PAD undefined) cr

[THEN]

\ 4tH compiletime words

[NOT] O= ;
[¥] = ;
[+] + ;
\ 4tH wordset
: TH CELLS + ;
1 @ e

: COPY (ab --b) >R DUP Ce 1+ R@ SWAP MOVE R> ;
: WAIT 1000 = MS ;

: NUMBER (a--n)
0. ROT DUP 1+ C@ [CHAR] - = >R COUNT
R@ IF 1 /STRING THEN >NUMBER NIP 0=
IF D>S R> IF NEGATE THEN ELSE R> DROP 2DROP (ERROR) THEN

>

( Reserve STRING-SPACE in data-space. )
CREATE STRING-SPACE /STRING-SPACE CHARS ALLQT
VARIABLE NEXT-STRING 0 NEXT-STRING !

( caddr n addr -- )
: PLACE OVER OVER >R >R CHAR+ SWAP CHARS MOVE R> R> C! ;

( "string<">" -- caddr )

: $" [CHAR] " PARSE
DUP 1+ NEXT-STRING @ + /STRING-SPACE >

ABORT" String Space Exhausted. "

STRING-SPACE NEXT-STRING @ CHARS + >R
DUP 1+ NEXT-STRING +!
R@ PLACE
R>

\ 4tHs Random generator

( Default RNG from the C Standard. ¢‘RAND’ has reasonable )
( properties, plus the advantage of being widely used. )
VARIABLE RANDSEED

32767 CONSTANT MAX-RAND



: RAND ( -- random )
RANDSEED @ ( random) 1103515245 =* 12345 + DUP RANDSEED !
16 RSHIFT MAX-RAND AND

: SRAND ( n -- ) RANDSEED ! ; 1 SRAND

( Don’t mumble. )
: random (--n) RAND ;

: set-random (n--) SRAND ;

( Mix ’em up. )
: randomize --)
TIME&DATE 12 * + 31 * + 24 * + 60 * + 60 * + set-random

’

randomize

7



78



GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free"
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright
holder saying it can be distributed under the terms of this License. The "Document", below,
refers to any such manual or work. Any member of the public is a licensee, and is addressed as
Hyou"-

A "Modified Version" of the Document means any work containing the Document or a portion of

it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that
overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary

79



80

Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical
or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, whose contents can be viewed and edited
directly and straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup has been
designed to thwart or discourage subsequent modification by readers is not Transparent. A copy
that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, I TEX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML designed for human modification. Opaque formats include PostScript,
PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML
or XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, "Title Page" means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s
license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and
legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title equally prominent
and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.



81

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general network-using public
has access to download anonymously at no charge using public-standard network protocols. If you
use the latter option, you must take reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly
or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section
of the Document). You may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under theterms of this License, in the form shown in the Addendum
below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given
in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there
is no section entitled "History" in the Document, create one stating the title, year, authors, and
publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous



82

versions it was based on. These may be placed in the "History" section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the
original publisher of the version it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant
Section. If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number.

Make the same adjustment to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections entitled "History" in the various original
documents, forming one section entitled "History"; likewise combine any sections entitled "Ac-
knowledgements", and any sections entitled "Dedications". You must delete all sections entitled
"Endorsements."



83

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, does not as a whole count
as a Modified Version of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this License does not apply to
the other self-contained works thus compiled with the Document, on account of their being thus
compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may
be placed on covers that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License provided that you also include the original English version of this License.
In case of a disagreement between the translation and the original English version of this License,
the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.



84

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License "or any later version" applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (¢) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES,
with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU Free Documentation
License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which
ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of
"Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.



